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Gábor Stépán,
Ambrus Zelei

Contact

Department of Applied Mechanics,
Budapest University of Technology and Economics,
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Welcome message
Welcome to the 10th ECCOMAS Thematic Conference on Multibody Dynamics!

The conference series has a remarkable history. It is home to professionals specialized in different technologies and
applications of multibody dynamics not only from Europe, but from all over the world. Our conference will be the 10th
in a successful series of meetings held in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011),
Zagreb (2013), Barcelona (2015), Prague (2017), Duisburg (2019). The organizers are grateful for the opportunity of or-
ganizing the ECCOMAS Thematic Conference on Multibody Dynamics in 2021 in Budapest. In spite of the difficulties
caused by the pandemic, we managed to keep the biannual structure of the conference series.

Multibody dynamics plays a central role in the modeling, analysis, simulation and optimization of mechanical sys-
tems with a large variety of engineering applications. The conference serves as an excellent opportunity for researchers
worldwide to exchange ideas in multibody dynamics concerning theoretical and application aspects such as multibody
kinematics, formalisms and efficient numerical methods developed for multibody problems, dynamics of flexible multi-
body systems, slender structures, contact problems and impacts, mechatronics, robotics and control, vehicle dynam-
ics, aerospace dynamics, system identification, optimization and sensitivity analysis, validation, software development,
biomechanics, gait analysis and education. The conference also provides a platform for sharing novel ideas within the
continuously growing multibody research community.

We faced major and unique challenges with the organization of the conference. As you know, the event was originally
planned to take place in the summer of 2021 in Budapest. However, due to the unforeseen, special circumstances of the
last two years imposed on us by the pandemic, we had to move the conference to the end of the year 2021, and eventually,
we had to decide to go with a fully online event. Despite the online nature of the conference, the number of presentations,
abstracts and papers is still high, which shows the activity and enthusiasm of the researchers in the multibody community.

The organizers are especially thankful for the contribution of the members of the Scientific Committee during the
thorough review process of the abstracts and the full papers.

Despite the challenges and the alternative form of the conference, we hope that you enjoy the event and find the
Proceedings as a valuable professional material when studying in details the background of the lectures of your interest.

Gábor Stépán, József Kövecses (chair and co-chair of the conference)
and the Organizing Team of the

10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS
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Pérez-Soto, Manuel; Lugrı́s, Urbano; Sanjurjo, Emilio; Cuadrado, Javier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Numerical stability analysis of the conservative SLIP model with a Hill-type muscle (ID: 234)
Patko, Dora; Zelei, Ambrus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Child Gait Predictive Dynamic Simulation (ID: 133)
Ezati, Mahdokht; McPhee, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Statistical Analysis of Performace Measures During Acceleration and Deceleration in Overground Running (ID: 247)
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Serfőző, Dániel; Pere, Balázs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Port crane guidance dynamics analysed via the Multibody approach (ID: 214)
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Rodrı́guez, Antonio J.; Sanjurjo, Emilio; Naya, Miguel Ángel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Survey of the Use of Multibody Simulations in the Development of Trolleybuses (ID: 187)
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ABSTRACT 

 

Nonlinear phenomena are studied in a variety of different engineering applications, ranging from stick-slip vibrations in oilwell 

drillstrings to subharmonic resonances of AFM microcantilevers. These systems are extremely complex and have a very rich 

dynamic behavior. Correspondingly, modeling of such systems is far from trivial, models are of large state dimension and can 

only be reduced to small dimensions through the adoption of a large number of simplifying modeling assumptions. Although 

this paradigm is inevitable to solve engineering problems, it is cumbersome for fundamental research on specific nonlinear 

phenomena. Moreover, the application of methods in nonlinear dynamics is still restricted to a few state dimensions. In 

academics, there is a need for relatively simple systems which can well be modeled with a few degrees of freedom and only 

show one particular nonlinear phenomenon. For this reason, a number of science toys (e.g. the Euler disk, the tippetop, the 

rattleback) have been taken up by the research community as archetypes for nonlinear phenomena, such as finite-time 

singularities or friction-induced instabilities. In this talk, we will bring a new archetype for friction-induced inversion to the 

scientific playground: the tippedisk, being an inhomogeneous disk spun on a support around an in-plane axis. Similar to the 

tippetop, the tippedisk inverts its orientation when spun rapidly. However, unlike the tippetop, the body has neither rotational 

symmetry in geometry, complicating its interaction with the supporting hyperplane, nor in its principal moments of inertia, 

leading to additional gyroscopic terms. We will present an adequate numerical model and use singular perturbation theory to 

describe and understand the inversion phenomenon globally on a two dimensional submanifold.  Furthermore, we will 

compare the low dimensional analysis with laboratory experiments. The tippedisk proves to be an excellent real-life system 

which can easily be modeled and experimentally tested and which allows to use the whole toolbox of nonlinear dynamics to 

analyze its global dynamics. 
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ABSTRACT 

 

This talk outlines efforts in the Simulation-Based Engineering lab at the University of Wisconsin-Madison to create a 

simulation environment that can be used to understand and shape the dynamics of autonomous mechatronics agents such as 

vehicles, robots, rovers, etc. I will describe a software infrastructure called Chrono that we have been augmenting for more 

than one decade and which seeks to support tasks such as assessing the operation safety of autonomous agents (AAs), 

improving this safety, reducing cost to market, and compressing the engineering design cycle. I will also highlight ongoing 

efforts in which we support projects aimed at characterizing the human-AA interaction. The talk will touch on the equations 

governing the dynamics of these agents (the physics of the agents), as well as the simulation of sensors and virtual worlds. 

Quick comments will be made on the question of whether control policies learned through simulation transfer to the real world, 

i.e., addressing the so-called sim-to-reality gap. 
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ABSTRACT 

 

Globally, digitalization is revolutionizing industry, and traditional business models based on material flow processing are being 

replaced by models based on data and knowledge processing. A data and knowledge processing business, i.e., a software-based 

business, seems complementary to even traditional economic theories. 

This presents an opportunity for multibody-based simulation. On the process level, multibody modelling and multibody-based 

twinning is enabling transparent monitoring of and accurate adjustment and control over production processes. Virtual 

processes can be rapidly and thoroughly tested in parallel with and as changes are made to the virtual product. This makes it 

possible to optimize and adjust processes to achieve ever higher environmental, economic, and operational efficiencies without 

ambiguity and free of 'process inertia'. Being able to effectively model products, equipment, people, environments, and both 

intended and causal interactions, i.e., by analyzing reality through simulation, enables industrial companies to better drive 

sustainable growth. This sustainability, which is comprised of environmental, technical, economic, social, and individual 

dimensions, can be addressed by implementing multibody-based twinning over the entire product or production system 

lifecycle. 

This paper introduces a number of cases where multibody-based models are used in different product processes. Example cases 

touch on (1) gamification-based product development, (2) new concepts in preventive maintenance that combine real-life data 

and simulation enabled by pervasive communication networks, (3) autonomous machinery, and (4) the adaptive optimization 

of manufacturing through applications of artificial intelligence. 
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EXTENDED ABSTRACT

1 Introduction

Real–time biofeedback has been used for years as a powerful rehabilitation tool. Many studies show that rehabilitation results
can be improved with the aid of motion capture systems, force plates, electromyography probes, inertial measurement units, and
other types of sensors, by allowing a patient to better adapt the movement to any kind of specified requirements through visual,
auditory or haptic feedback [1].

By using complex biomechanical models, it is possible to combine the sensor measurements in order to obtain advanced biofeed-
back systems, even allowing to estimate muscle efforts in real time [2]. In this work, an Extended Kalman Filter (EKF) for
real–time estimation of the motion and its driving forces and torques is developed. The filter is based on a previous EKF designed
for real–time motion capture, using a kinematic model [3], but in this case the system dynamics are also included. Therefore, the
new EKF allows to generate feedback in real time from the estimated ground reactions and joint torques, and, as an additional
benefit, the motion reconstruction is improved, since the dynamics of the multibody system are now taken into account.

2 Multibody model

The EKF proposed in this work is based on a multibody model representing the musculoskeletal system [3], as shown in Figure 1.
The model consists of 18 rigid bodies, mostly constrained by spherical joints, with a total of 52 degrees of freedom, grouped into
a vector of independent coordinates z.

Figure 1: Multibody model

The equations of motion of the multibody system have the following form:

M(z) z̈ = Q(z, ż)+B(z)Fe (1)

where M is the mass matrix, Q contains the gravitational, centrifugal and Coriolis forces, Fe are the estimated joint torques and
ground reaction forces, and B is a matrix that transforms the latter into generalized forces.

3 Extended Kalman Filter

The state vector of the Kalman filter, x, comprises the independent coordinates of the model z, their first time derivatives ż, and
the estimated applied forces Fe. In order to express the state propagation model in a linear state–space form, the first step is to

15



solve the ODE system (1) for the accelerations [4]:

z̈ = M−1 (Q+BFe) (2)

Then, the resulting equations can be linearized about a reference state, and written in linear state–space form:



δ ż
δ z̈

δ Ḟe


=




0 I 0
∂ z̈
∂z

∂ z̈
∂ ż

∂ z̈
∂Fe

0 0 0






δz
δ ż

δFe


+




0
0
w̃


 (3)

where δ denotes the increment of the corresponding state variable. In this filter, δFe will be considered as a Wiener process,
so its derivative consists of continuous–time zero–mean white noise w̃, which is introduced in the model as plant noise. By
following the standard procedure to derive a discrete EKF from a continuous model, this ODE system can be discretized in time,
thus providing the state transition and noise covariance matrices of the filter.

In this implementation, the system observation is carried out by two sets of sensors: 36 optical markers placed at anatomical
landmarks, and two force plates, as shown in Figure 2. The observation function h(x), which provides the sensor values as a
function of the state, is also nonlinear, so its Jacobian matrix must be computed in order to obtain the observation matrix H(x)
of the filter.

Figure 2: Motion capture using optical sensors

4 Conclusion

After tuning the plant and sensor noise parameters, the filter provides robust motion capture and reconstruction, while estimating
joint torques and ground reactions on the fly, without the need of further post–processing. However, since the filter uses mostly
position sensors, the estimation of those efforts that are not being directly measured (i.e., the joint torques) is delayed in time.
The amount of delay may or may not be acceptable, depending on the biofeedback application, but it can be greatly reduced by
adding gyroscopes or accelerometers to the filter, as shown in [4].
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EXTENDED ABSTRACT 

1 Introduction 

The human balancing process is an interesting research topic which requires multidisciplinary knowledge. Various models are 

used to analyze the hopping, running movements and the underlying causes of its stability in case of humans, animals and 

biomimetic robots. Several types of muscle models can be used to consider the non-linearities of the muscle system. 

2 Mechanical model 

We study the spring-loaded inverted pendulum (SLIP) model [1]. However instead of the spring, we attached a simplified Hill-

type muscle to the point-mass, which consists of the active element only. Note that since the muscle can only exert pulling force, 

we need to invert the muscle model such as in the work of Häufle et al. [2], where they analyzed a similar model for a vertical 

hopping. However, we consider running movement assuming stability arises from this kind of movement. Let us denote the state 

variables of the system as 𝐱: 

 𝐱 = [𝑥, 𝑦, �̇�, �̇�]T,  (1) 

where 𝑥, 𝑦 are the Cartesian-coordinates of the point-mass. The intrinsic properties of the muscle model can be considered in 

different complexities. At this point, we consider conservative autonomous systems only. Hence we neglect the force-velocity 

relation of the active element of the muscle so that we assume the relation is constant, moreover we assume constant maximal 

muscle activation such as in [2]. Three alternative force-length relation is studied: constant, linear and non-linear Hill-type. 

3 Methods 

The system is non-smooth, and it is capable to move on a periodic trajectory, which consists of a flight and a stance phase. The 

flight phase equation of motion can be solved in closed form, but the stance phase equation of motion cannot be due to the 

geometric nonlinearities. First let us choose a Poincaré-section, for convenience let it be the apex point of the flight phase, when 

�̇� is zero. The 𝑥 variable is a quasi-cyclic coordinate since it has no effect on the motion in the flight phase. However, it appears 

in the equations regarding the stance phase, but only its relative position matters from the ground attachment point. In case of 

periodic motion with time period 𝑇 the solution coincides the Poincaré-section at the same point. Therefore, if we treat the 

behavior of the system as a black box between 𝑡0 and 𝑡0 + 𝑇, where 𝐱(𝑡0) is on the Poincaré section, only two variables affect 

the stability of the system, 𝑦 and �̇�. Note that at this point we only consider autonomous conservative systems, therefore if we 

fix the mechanical energy of the system, we can express one of these variables as the function of the other. Therefore, the stability 

of the system can be analyzed via a 1D return map, as shown in Figure 1. 

 

Figure 1: 1D return maps of the system from left to right the force-length relation is: constant, linear, non-linear Hill-type 

According to this method, we can conclude that with all the three force-length relations orbital asymptotic stability can be 

achieved within a mechanical energy range. Moreover, the basin of attraction and bifurcations can also be determined from these 

maps. In every mechanical energy level where stable hopping is possible, the system has an unstable periodic trajectory too. The 

stable hopping is associated with lower jumping heights but faster running velocities. As the mechanical energy level is 
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increasing, these two fix points grow apart, and since the upper limit of the basin of attraction (BoA) is the jumping height of the 

corresponding unstable motion, the BoA is increasing. However, the BoA size can shrink abruptly, because high energy curves 

intersect the limiting minimal jumping height, which results in a fall-over since the system is not able to take off at the end of 

the stance phase. Another interesting phenomenon can be observed; there is a lower energy limit for periodic orbits connected 

with a saddle-node bifurcation. 

The question arises; what happens when the system meets with a disturbance that causes it to change its mechanical energy level? 

For this kind of analysis, the 1D return map is not appropriate. We should find the monodromy matrix 𝐂 of the system, which is 

constructed numerically via the help of the fundamental matrices 𝚽 of each phase and the saltation matrices 𝐒 connecting these 

phases [3]. In our case, since the Poincaré-section is in the middle of the flight phase, the principal matrix is as follows: 

 𝐂 = 𝚽F(𝑡apex)𝐒S2F(𝑡S2F)𝚽S(𝑡S2F)𝐒F2S(𝑡F2S)𝚽F(𝑡F2S).  (2) 

The construction of the matrices in (2) is detailed in the work of Piiroinen et al. [3]. The indexes S and F denote the stance and 

flight phases respectively. S2F denotes the phase change from stance to flight and vice versa. According to the Floquet theory, 

the eigenvalues of the principal matrix determine the stability of a solution. In our case, we have two eigenvalues with the value 

1, one zero Floquet multiplier and one which depends on the initial conditions. Since the system is autonomous, one of the 1-

valued eigenvalue is the trivial one associated with the trivial eigenvector. The zero multiplier is associated with the 𝑥 direction, 

since the 𝑥 coordinate is quasi-cyclic it is projected in every stance phase such a way that the attachment point to the ground is 

in the origin. The initial condition dependent multiplier is the same as one can determine from the 1D return maps. The remaining 

1-valued multiplier suggests that the system can only achieve neutral stability for all force-length complexities in case of arbitrary 

disturbance. This finding is in correspondence with the fact that the system is conservative, therefore cannot change its 

mechanical energy level on its own. Therefore, a perturbated solution will converge to the periodic solution on a given iso-energy 

surface and since the initial conditions which result in periodic motions are continuous, some of the error between the original 

and the new trajectory will disappear, but if the mechanical energy have changed, a remaining difference can be observed; as 

shown for dimensionless generalized coordinates in Figure 2. 

 

Figure 2: Relation between the iso-energy surfaces and trajectories, ℎ is the switching function 

4 Conclusion 

For energy conserving perturbations, orbital asymptotic stability can be achieved by a conservative autonomous SLIP model 

with a simple Hill-type muscle using any of the three (constant, linear and non-linear Hill-type) intrinsic force-length relations. 

Therefore, running movement provide stability in contrast to vertical hopping, where orbital asymptotic stability cannot be 

achieved unless at least linear force-velocity relation was considered, and the system lost its conservatism [2]. 
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EXTENDED ABSTRACT 

1 Introduction 

Most recent predictive gait simulations focused on adults and older people, but clinical centers working on treatments of child 

gait disorders prefer to rely more on pediatric gait simulations than adult gait simulations. Recent predictive gait simulations 

used an anatomically-detailed muscle model (i.e., Hill-type muscle model) to simulate the muscles, but it is challenging to fit an 

anatomically-detailed muscle model to specific subjects due to computational and modeling challenges. In this research, we 

developed computationally-efficient and physiologically-meaningful musculoskeletal (MSK) and neuromusculoskeletal 

(NMSK) models to simulate natural, slow, and fast gaits for children using muscle-torque-generators (MTGs). MTGs fit specific 

subjects more easily than anatomically-detailed muscle models. We also evaluated the effect of different optimization cost terms 

on the accuracy of the predicted results by developing a wide range of child natural-gait simulations, ranging from fully-data-

tracking to fully-predictive. 

2 Methods 

We developed a 2-dimensional 11-degree-of-freedom (11-DOF) child model in contact with the ground through a 3-dimensional 

ellipsoidal volumetric foot-ground contact model [1]. The model includes 3-DOF HAT-to-ground joint (HAT: head-arms-trunk 

segment), 1-DOF hip joints, 1-DOF knee joints, 1-DOF ankle joints, and 1-DOF metatarsal joints. The metatarsal joints are 

torque-driven, and the hip, knee, and ankle joints are actuated by pairs of agonist and antagonist MTGs proposed by [2]. The 

parameters of the MTGs were fitted to our child gait model using a parameter identification done by direct collocation optimal 

control in which the mean experimental gait motion data of 20 healthy children were tracked. The subjects were 9 males and 11 

females with an age of 10.8±3.2 years, a mass of 41.4±15.5 kg, and a height of 1.47±0.2 m [3]. 

To generate natural, slow, and fast gait simulations, we used two separate direct collocation optimal controls: “MSK-model 

optimization” and “NMSK-model optimization”. In the MSK-model optimization, the musculoskeletal geometry and muscle 

contraction dynamics were represented by MTGs and the control inputs are 12 MTG activations, considering 6 MTGs for each 

leg. In the NMSK-model optimization, the MSK model along with muscle activation dynamics were used and the control inputs 

are 16 muscle excitations, considering 8 muscles for each leg. We used the MSK-model and NMSK-model optimizations to 

predict five different-speed gaits, including very slow walking at 0.9 m/s (XS), slow walking at 1.09 m/s (S), natural walking at 

1.26 m/s (M), fast walking at 1.29 m/s (L), and very fast walking at 1.58 m/s (XL). 

To simulate the XS, S, L, and XL gaits, the final times of the optimizations and the bounds on the states and control inputs were 

defined based on the experimental data of the corresponding slow and fast gaits extracted from [3]. The cost function consists 

of: (1) three dynamic-based cost terms (DYN), minimizing joint jerks and residual loads and solving motion dynamics implicitly, 

(2) a stability-based cost term (STB), controlling the motion of the center of mass, (3) three human-criteria-based cost terms 

(HC), minimizing MTG activations for the MSK model, and muscle activations and metabolic energy consumption for the 

NMSK model, and (4) three data-tracking cost terms (DT), tracking the experimental joint angles (Ang), torques (Trq), and 

ground reaction forces (GRF) of the natural gait (i.e., the M walking) scaled (stretched/compressed) with respect to the cycle 

time of the gait we wanted to predict. 

To simulate the M walking, we implemented different gait simulations, ranging from fully-tracking to fully-predictive, using the 

proposed MSK and NMSK models. For each model’s optimization, we investigated eight cost functions composed of the cost 

terms DYN, STB, HC, and DT cost terms (Table 1). The cost terms, specified by a checkmark in each row of Table 1, were first 

multiplied by weighting factors and then summed together to form the cost function named at the beginning of the row. In cost 

function #1, fully-data-tracking (FDT), all three DT cost terms were used. In cost functions #2-4, semi-data-tracking (SDT), two 

of the DT cost terms were used and in cost functions #5-7, semi-predictive (SP), only one of the DT cost terms was used. In cost 

function #8, fully-predictive (FP), there is no DT cost term. 

3 Results 

According to the findings from the XS, S, L, and XL gait simulations, the larger the gap between the speed of slow or fast gaits 

and the speed of natural gait, the longer the computational time and the less accurate the results for slow-gait or fast-gait 

simulations. The MSK-model and NMSK-model optimizations predicted physiologically-realistic torques, motions, and GRFs 
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for child slow and fast gaits. The NMSK-model predicted the joint torques for the XS, S, L, and XL gaits with normalized-root-

mean-square errors (NRMSEs) of 0.10,  0.07, 0.07, and  0.10, respectively, that are 17%, 12%, 10%, and 2% more accurate than 

the MSK-model’s resultant torques. The NRMSEs were calculated given the experimental inverse dynamic torques of child slow 

and fast gaits. The NMSK-model optimization also predicted cost of transport (COT) (Figure 1) and muscle excitations (Figure 

2) for the different-speed gaits. The COT plot in Figure 1 follows the expected ‘U’-shaped curve, where the minimum occurs at 

the natural speed. Most of the resultant muscle excitations were in agreement with the experimental EMG data (gray plots in 

Figure 2). 

According to the findings from the M gait simulations with different cost functions, the NMSK-model optimizations converged 

roughly 2.5 times faster than MSK-model optimizations since the control inputs of the NMSK-model optimizations were muscle 

excitations, the initial guess of which were set to EMG data. The NMSK-model optimization with the SDT3 cost function pre-

dicted the most accurate muscle excitations. With the FP cost function, the NMSK-model optimization predicted angles, torques, 

tangential, and normal GRFs with root-mean-square errors (RMSEs) of 5.8 degree, 7.5 N.m, 15.8 N, and 62 N, respectively, 

which are 20%, 16%,  10%, and 8% more accurate than the MSK-model optimization’s results. The NMSK-model optimization 

with the FP cost function predicted muscle excitations with an RMSE of 0.06, 12% more accurate than NMSK-model optimiza-

tion’s muscle excitations with the FDT cost function.  

 

Table 1. The configurations of cost functions. 

# 
cost 

function 

cost term 

DYN STB HC 
DT 

Trq Ang GRF 

1 FDT ✓ ✓ ✓ ✓ ✓ ✓ 

2 SDT1 ✓ ✓ ✓ - ✓ ✓ 

3 SDT2 ✓ ✓ ✓ ✓ - ✓ 

4 SDT3 ✓ ✓ ✓ ✓ ✓ - 

5 SP1 ✓ ✓ ✓ - - ✓ 

6 SP2 ✓ ✓ ✓ - ✓ - 

7 SP3 ✓ ✓ ✓ ✓ - - 

8 FP ✓ ✓ ✓ - - - 

 

 

 

Figure 1. Predicted cost of transport vs. gait speed. 

 

 

Figure 2. Predicted muscle excitations vs. time. 

4 Conclusion 

The proposed MSK-model and NMSK-model optimizations could minimize the reliance of simulations on experiments and 

predict dynamically-consistent and physically-realistic slow and fast gaits for children by tracking the scaled experimental data 

of natural-speed gait. In addition, with the fully-predictive cost function, the proposed NMSK-model could predict angles, tor-

ques, GRFs, and muscle excitations comparable with experimental data and estimate COT (1.53 Jkg-1m-1) for child natural gait. 
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EXTENDED ABSTRACT

1 Introduction

Human running has been an increasingly popular research topic over the last decades. There are plenty of open questions,
especially regarding the operation of the central nervous system (CNS) and the underlying optimization principles. Based on
previous studies, the description of those optimization processes is possible based on a combination of time-variant cost functions.
Our long-term goal is to understand this process based on experimental evidences, related to well-defined cost functions, such
as energy dissipation, energy conservation or energy accumulation. These cost functions are in analogy with deceleration,
constant speed locomotion and acceleration. Numerous scientific papers provide measurement data related to acceleration in
the stance phase [1, 2]. However, the literature lacks of analyses for deceleration, and particularly for the airborne phase. We
think that deceleration should be investigated, since better understanding of the CNS’s optimization principles become possible.
Furthermore, many injuries happen during deceleration. Thus, we collected new data related to varying speed locomotion and
compared constant velocity running, acceleration and deceleration.

2 Methods

Eight non-professional athletes (3 males, 8 females, age: 17,9±3,9; height: age: 1,697±0,69 [m]; weight: 57,4±11,7 [kg])
participated in the measurement. They were performing five tasks corresponding to different cost functions: 1) slow, 2) moderate,
3) high speed running, 4) acceleration to full speed and 5) deceleration from full speed. The kinematics was recorded by
OptiTrack motion capture system, and we used Moticon Science Insoles to assess the foot pressure distribution. The beginning
and the transition of the gait cycles (initial contact - IC and toe off - TO) were identified. Metrics characterizing the locomotion,
e.g. joint/segmental angles, position of the centre of pressure (CoP) and its distance from the centre of mass (CoM) and ground
reaction force components, were calculated from the raw data for every gait cycle. We also used an inverse dynamics model to
evaluate the forces and moments acting on the joints.

3 Results

The measures mi (t), such as segmental angles and force data were stored as time functions. The scalar values at stance and
flight transitions and extremes were extracted: mi (tIC) at IC, mi (tTO) at TO, max(mi (t)) and min(mi (t)). The average and the
confidence interval (significance level p=0.95) were calculated to visualize the data. The most used visualization techniques are
collected in Fig. 1. Wilcoxon signed-rank test was used to identify the metrics, which could identify the cost-functions for the
different tasks. We also made a correlation analysis to determine, whether there is a correlation between the speed and measures
(for constant velocity running) or between the running type (deceleration, constant speed and acceleration) and the measures.
Fig. 2 shows plots related to the data analysis. Based on the resuls of the Wilcoxon signed-rank test, we can state that there is
a significant difference in case of the relative and absolute segment angles, total force, angular velocity of the foot and distance
between the centre of pressure and centre of mass. Those differences are also visible on the time-functions. For constant speed
running, we found that there is a strong correlation between the velocity of the participants and the elevation of the toe and the
ankle, therefore the foot, shank, thigh and knee angles also show correlation. Angular acceleration and the CoP-CoM distance
also correlate with the velocity. For the deceleration-constant speed running-acceleration comparison there is a strong correlation
between the running types and the thigh angle, trunk angle and the x-components of the forces acting in the joints (x axis shows
the direction of the locomotion).

4 Conclusions

Metrics, taken from the literature, were used to observe quantitative changes caused by different cost functions in case of different
velocities, acceleration or deceleration. We could also observe some trends regarding the changes caused by the different loco-
motion types or velocity difference. These results help us to create predictive models of human gait and kinematics reproduction.
Functional role and movement strategy of each joint would be identified [2, 3] and included into the models in future work.
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Figure 1: Tools for data visualisation and statistics: stroboscopic visualization of the motion (first panel); knee angle changes
during a gait cycle; measured vertical ground reaction force (third panel); path of the ground-reaction force vector [1] (fourth
panel).

Figure 2: Tools for statistics: confidence intervals for each task in case of each scalar measure (top left panel); confidence
intervals for each task and each subject in case of each scalar measure (top middle panel); matrix plot of the signed-rank test,
where black / white tiles indicate significant difference / not proven difference for each scalar measure (top right panel); example
data plotted for the knee angle minimum to calculate correlation (bottom left panel); correlation coefficients for the measures
taken from Moticon (bottom right panel).
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EXTENDED ABSTRACT 

1 Introduction 

Many researchers have studied human gait by modeling human body as a simple mechanical system represented 

mathematically as biped models that can describe the basics of human motion. Many studies in the literature on humanoid 

robots have focused in deriving the model using standard continuous-time mechanics. In [1], a gait trajectory of biped model in 

continuous time domain has been provided using simple technique that is based on the symmetric features in the dynamics of 

this compass-type model. The motion obtained by their technique resembles the phenomenon of a passive dynamic walking, 

since the motion contains swing phase and a foot collision taking place one after another.  Srinivasan et. al., [2] have simulated 

human gait using an inverted pendulum model with the assumption of a rigid human body and massless legs. The model in [2] 

generated the energy-based optimal gait of three distinct types of human gait that are; i) walking, ii) inverted pendulum run, 

and iii) running. The discrete mechanics, on the other hand, have been recently applied to derive biped models. Compass-type 

biped model and discrete mechanics are used in [3] to formulate a gait generation problem. They have verified the generation 

of a stable gait by formulating a constrained nonlinear optimization problem in which the model minimizes the angular 

velocities using both impact and swing phases models. In 2015, Sun et. al. [4] have studied periodic gait optimization problem 

of the bipedal walking robot using discrete mechanics. Their study has shown that the algorithm can converge to a stable gait 

cycle by selecting a proper initial guess of the gait [4]. The paper gives a brief introduction about Discrete Euler Lagrange 

Formulation and how to derive the system dynamics using this method. Then, an optimization problem is formulated to 

generate the optimal gait for the biped base on minimum cost function. 

2 Mathematical Model and Problem Formulation 

The proposed model consists of two point masses, one represents the rigid torso and the other one represents the hip, and two 

massless legs. The hip mass mH is at a position (xH, yH) at time 𝑡, and the torso mass mT is at a position (xT, yT ) . The torque 

τ(𝑡) controls the torso between the stance leg and the torso. The fluctuations of the leg length 𝑞(𝑡) due to flexion of the hip, 

knee and ankle are incorporated in a single telescopic axial actuator that carries a compressive time varying force 𝐹(𝑡). 

 

Figure   1: Biped Model with a Torso 

The formula of discrete Lagrangian is obtained by estimating the integral of the continuous-time Lagrangian over a small 

interval of time h using the midpoint rule [5]. 

ℒ𝑑(𝑞𝑘, 𝑞𝑘+1) =  ∫ ℒ(𝑞, �̇�)𝑑𝑡
𝑡𝑘+1

𝑡𝑘

= ℎℒ(
𝑞𝑘+1 + 𝑞𝑘

2
,
𝑞𝑘+1 − 𝑞𝑘

ℎ
) 

The equations of motion are derived using Discrete Euler Lagrange formulation by assuming the two legs are identical and 

only one-foot contacts the ground. 

 
𝐷1ℒ𝑑(𝜃1𝑘, 𝜃1 𝑘+1, 𝜃2𝑘, 𝜃2 𝑘+1, 𝑞𝑘, 𝑞𝑘+1) + 𝑓𝑑

−(𝜃1𝑘, 𝜃1 𝑘+1, 𝜃2𝑘 , 𝜃2 𝑘+1, 𝑞𝑘 , 𝑞𝑘+1) 

                               + 𝐷2ℒ𝑑(𝜃1𝑘−1, 𝜃1 𝑘, 𝜃2𝑘−1, 𝜃2 𝑘, 𝑞𝑘−1, 𝑞𝑘) + 𝑓𝑑
+(𝜃1𝑘−1, 𝜃1 𝑘, 𝜃2𝑘−1, 𝜃2 𝑘, 𝑞𝑘−1, 𝑞𝑘) = 0  (1) 
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Given a specific d, assuming that the biped starts its step with the nominal leg length (R + q(1) = R); we seek the control 

strategy; that minimizes the cost of transport 

 

 J = ∑ ℎ.
|𝐹𝑘(𝑡)(

𝑞𝑘+1−𝑞𝑘
ℎ

)|+|𝑇𝑘(
𝜃1 𝑘+1−𝜃1 𝑘

ℎ
−

𝜃2 𝑘+1−𝜃2 𝑘
ℎ

)|

2𝑚𝑔𝑑

𝑁
𝑘=1   (2) 

Subject to dynamics constraints given in equation (1) and satisfying periodicity constraints of the gait: 

 Same position and velocity of the torso before and after the step. 

 Same velocity of the hip in both X and Y direction before and after the step. 

 Same position of the hip in Y direction before and after the step. 

 The difference between the final and initial positions of the hip is the step length d. 

In addition to the pervious constraints, the maximum length is constrained to be 10% of the nominal length of the leg [6]. 

3 Simulation Results  

In each trial, the optimizer started with different initial conditions. The optimizer will seek solutions as the two parameters step 

size d and speed v are varied. It converges to a unique solution that determines the optimal gait for this speed and step length. 

The following figures show the gait pattern for 0.6 m step size with velocity of 1.566 m/s. The optimal gait for these 

parameters, based on the minimum cost of transport, is walking.  

 

Figure   2: Ground reaction force profile during walking                                Figure   3: Torso angle at different step sizes 

4 Conclusion 

Despite the fact that the model used is simple and lacking many features of human walking like knee flexion and ankle joint, 

the gait optimization for this simple model predicts many features of human locomotion. The results show that the movement 

of torso changes with changing the step size and walking speed. 
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EXTENDED ABSTRACT 

Because spine curvature influences vertebral loading and factor-of-risk patterns for neutral standing and other activities [1], 
determination of the correct location and orientation of the spine bodies is essential for effective prevention, evaluation and 
treatment of spinal disorders. In this field, the X-ray image is still used as “gold standard”, and remains an essential tool for the 
diagnosis of spinal abnormalities/deformities, as it accurately reveals the degree and severity of the problem. However, this 
technology is not accessible for most clinicians, and diagnostic X-ray exposure increases the risk of cancer [2]. Nowadays, there 
is a wide range of spine posture and motion assessment tools available for clinical use [3]. Even if optoelectronic systems can 
yield very accurate results, surface markers usually do not offer information on spine rotations. Recent developments in 
microelectromechanical systems (MEMS) have caused a renewed interest in the use of Inertial Measurement Units (IMUs) to 
record three-dimensional (3D) human posture and motion [4]. 

 

Figure 1: a) IMUs attached to the subject's body and markers attached to the IMUs; b) Multibody model of the spine.  

IMUs estimate their own orientation within an Earth-fixed frame by using sensor fusion algorithms, such as Madgwick’s 
algorithm [5] or the extended Kalman filter (EKF). These algorithms provide an estimate of the orientation by combining the 
information coming from the triaxial accelerometers, gyroscopes and magnetometers present in the IMU. Because the spinal 
curvature is soft, i.e. it can be approximated using a cubic spline [6], and the relative orientations of vertabrae are limited by 
anatomical restrictions, a reduced number of sensors can be used to estimate a higher number of vertebral orientations by 
extrapolation with the help of a multibody model of the spine. In this work, the location and orientation of the 17 vertebrae 
constituting the thoracolumbar region of the spine were estimated and compared from different sensor configurations (varying 
the number of sensors from 3 to 5). Calibration of the IMUs, angular offsets, gender differences and scaling difficulties were 
addressed in this study to achieve an accurate 3D-representation of the spine. To validate the approach and evaluate the accuracy 
and consistency issues due to IMU measurements, closely related to sensor calibration and magnetometer sensitivity [7], [8], 
three optical reflective markers were attached to each inertial sensor (Fig. 1a). The locations of the IMUs provided by the optical 
motion capture system (OPT) were compared with their estimated locations based on the readings from the IMUs and the spine 
multibody model. Additionally, the proposed method can be applied by using the orientations obtained from the markers instead 
of those obtained from the IMUs themselves, thus offering both an evaluation of the orientations provided by the IMUs and a 
new configuration of markers to estimate the missing information on spine rotations observed by using other skin-attached 
marker configurations. 
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To validate the approach and the correct location of the bodies, the estimated positions of the sensors using the multibody model 
(green dots in Fig. 1b) and the inertial measurement system were compared with those obtained from the optical system (black 
dots in Fig. 1b) using the three markers attached to each IMU (red dots in Fig. 1b). The position of IMU #1 was set as the origin 
of the two systems, and the position errors corresponding to IMUs #2, #3, #4 and #5, four control points of the 3D spline defined 
by the spine, were determined for nine healthy subjects with the two motion capture systems (IMU and OPT) and the several 
sensor configurations (Fig. 2). 

 

Figure 2: Lateral view of the nine 3D spine postures obtained with the inertial system and five sensors. 

Obtaining the sensor orientations from the optical system, the mean errors were 1.05 cm using 4 or 5 sensors, and 1.53 cm using 
3 sensors. Obtaining the sensor orientations from the inertial system, the errors showed slightly higher values, with a minimum 
mean error of 1.23 cm using 4 IMUs, and mean errors of 1.40 cm using 5 IMUs and 1.31 cm using 3 IMUs. The mean error in 
the location of vertebra T1, the last body of the open kinematic chain, was 0.84 cm using 5 IMUs and the optical system. With 
the other configurations (either with OPT or IMU), the error at T1 was found to be between 1.0 cm and 1.37 cm. The mean length 
of the spine measured along the skin of the subjects was 40.8 cm. 

References 

[1] A. G. Bruno, K. Burkhart, B. Allaire, D. E. Anderson, and M. L. Bouxsein, “Spinal Loading Patterns From 
Biomechanical Modeling Explain the High Incidence of Vertebral Fractures in the Thoracolumbar Region,” J. Bone 
Miner. Res., vol. 32, no. 6, pp. 1282–1290, 2017, doi: 10.1002/jbmr.3113. 

[2] Y. Zhang et al., “Diagnostic radiography exposure increases the risk for thyroid microcarcinoma,” Eur. J. Cancer 
Prev., vol. 24, no. 5, pp. 439–446, Sep. 2015, doi: 10.1097/CEJ.0000000000000169. 

[3] E. Digo, G. Pierro, S. Pastorelli, and L. Gastaldi, “Evaluation of spinal posture during gait with inertial measurement 
units,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 234, no. 10, pp. 1094–1105, Oct. 2020, doi: 
10.1177/0954411920940830. 

[4] G. D. Voinea, S. Butnariu, and G. Mogan, “Measurement and geometric modelling of human spine posture for medical 
rehabilitation purposes using a wearable monitoring system based on inertial sensors,” Sensors (Switzerland), vol. 17, 
no. 1, 2017, doi: 10.3390/s17010003. 

[5] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a 
gradient descent algorithm,” in 2011 IEEE International Conference on Rehabilitation Robotics, Jun. 2011, pp. 1–7, 
doi: 10.1109/ICORR.2011.5975346. 

[6] D. D. Bethune, L. H. Broekhoven, E. Kung, and D. G. Snewing, “Statistical method for evaluating human 
thoracolumbar spinal curves in the sagittal  plane: a preliminary report.,” Arch. Phys. Med. Rehabil., vol. 67, no. 9, pp. 
590–594, Sep. 1986. 

[7] M. A. Brodie, A. Walmsley, and W. Page, “Dynamic accuracy of inertial measurement units during simple pendulum 
motion,” Comput. Methods Biomech. Biomed. Engin., vol. 11, no. 3, pp. 235–242, 2008, doi: 
10.1080/10255840802125526. 

[8] J. Cuadrado, F. Michaud, U. Lugrís, and M. Pérez Soto, “Using Accelerometer Data to Tune the Parameters of an 
Extended Kalman Filter for Optical Motion Capture: Preliminary Application to Gait Analysis,” Sensors, vol. 21, no. 
2, p. 427, Jan. 2021, doi: 10.3390/s21020427. 

26



10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS

Section
BIOMECHANICS

BIOMECH-1-2-3

27



 

 

ECCOMAS Thematic Conference on Multibody Dynamics 

December 12- 15, 2021, Budapest, Hungary 

A New Method for Feedback and Feedforward Decomposition of Human Postural Control: 

Application to Single-Leg Yoga Postures 

Luciano Menegaldo, Dafne Pires Pinto, Pedro Sarmet Moreira 

 
 Biomedical Engineering Program 

Federal University of Rio de Janeiro 

Av. Horácio Macedo 2030, 

21941-914, Rio de Janeiro, Brazil 

lmeneg@peb.ufrj.br 

 

 

EXTENDED ABSTRACT 

1 Introduction 

Human postural control requires integrating several control strategies associated with exploring passive joint limits in a mixed 

feedback-feedforward control [1]. Zatsiorsky and Duarte [2, 3] proposed the Rambling (RM) and Trembling (TR) decomposition 

of the Center of Pressure (COP) trajectory, in quiet bipedal standing, for assessing feedforward (rambling) and feedback 

(trembling) mechanisms acting to maintain an upright posture. Rambling represents a slowly moving equilibrium feedforward 

reference point, mediated mainly by the brain cortex. The trembling part is associated with faster peripheral, spinal reflex 

feedback control mechanisms, which try to follow or restore the body trajectory toward the reference point [4, 5]. The primary 

outcome variables of rambling/trembling decomposition are the variability, expressed by the standard deviation, and speed of 

the decomposed COP trajectories. Here, we investigate whether Yoga practice can induce motor control adaptations at the cortical 

or spinal levels, comparing RM and TR trajectories of Yoga practitioners (YG) and non-practitioners (CG) while performing two 

single-leg support Yoga postures, the Vrksasana (tree posture) and Natarajasana (dancer posture). 

The original RM/TR decomposition algorithm [2, 3] is based on the subsampling of COP trajectory at the instant equilibrium 

points (IEP), which are the timestamps when the horizontal force, measured by the force platform, equals zero. These points are 

the knots for generating interpolating cubic splines that define the RM trajectory. TR is the difference between COP and RM. 

The original algorithm did not apply to our data because horizontal forces rarely crossed zero while performing the Yoga postures. 

Additionally, the small horizontal postural forces rely usually over the same magnitude of some force plates accuracy, while low-

cost game-designed force platforms, such as the Wii-Board, does not measure horizontal forces. Zatsiorsky and Duarte [2] 

suggest that RM and TR can be defined, alternatively, by selecting different parts of the COP Power Spectrum Density (PSD). 

Based on this idea, we introduced a new method to perform the RM/TR decomposition using a genetic algorithm optimization 

for adjusting the parameters of a Savitzky-Golay (SG) polynomial smoothing filter. SG is a generalized Low-pass finite impulse 

response filter that preserves signal tendency by fitting data in a moving window with successive low-order polynomials. Here, 

we have applied this method to Yoga postural data and compared the RM and TR trajectories between YG and CG. 

2 Methods 

Ten yoga practitioners (YG: Yoga Group; three men; 37.2 ± 8.7 years; 1.66 ± 0.1 m; 63 ± 10.2 Kg) and ten non-practitioners 

(CG: Control Group; four men; 34.7 ± 8.6 years; 1.67 ± 0.09 m; 69 ± 15.4 Kg) participated on the study, which was approved 

by the Institution’s Ethics Committee. The volunteers were instructed to maintain the body as stable as possible while performing 

the single-leg postures Vrksasana and Natarajasana. Healthy non-yoga practitioners can perform such postures without 

significant difficulties. A 20-seconds stable stretch of the signal was considered, after the volunteers stabilized the Yoga posture 

departing from bipedal quiet standing. The biomechanical signals were captured using a BTS Smart-D system (BTS® 

Bioengineering, Italy) comprising eight infrared cameras sampled at 250 Hz and two P-6000 force platforms (40cmx60cm) 

sampled at 1000 Hz. Thirty-three reflective markers were placed on specific anatomical body parts. Full-body kinematics and 

inverse dynamics were reconstructed using the 37 DOF OpenSim Lai-Arnold (https://simtk.org/projects/model-high-flex) 

multibody model. Kinematics, COP and ground reaction forces were filtered by a Butterworth 4th-order zero-lag low-pass filter 

with the cut-off frequency of 6 Hz. Examples of OpenSim reconstructed postures are illustrated by the videos: Vrksasana 

https://doi.org/10.6084/m9.figshare.11529369 and Natarajasana https://doi.org/10.6084/m9.figshare.11529507. COP parameters 

in the anteroposterior (AP) and mediolateral (ML) directions were analyzed separately.  

As mentioned above, the original RM/TR algorithm does not apply to our data, and a criterion based on COP PSD was used. The 

average mean frequency from Zatsiorsky and Duarte [2] data for the RM was 0.16±0.03Hz and TR 0.67±0.12 Hz, such that the 

decomposition works approximately as a low/high-pass filter. A genetic algorithm was used to adjust the order (O) ∈ N and the 

frame length (FL) ∈ Nodd of a Savitzky-Golay (SG) polynomial smoothing filter. The genetic algorithm optimization problem 

was formulated as follows. For each trial, Find O and FL that minimize the cost function J 
 

 𝑱 = ∫ [𝑺𝒙𝒙(𝑪𝑶𝑷)𝟐 − 𝑺𝒙𝒙(𝑹𝑴)𝟐]𝟎.𝟓𝒇=𝟎.𝟑𝟐

𝒇=𝟎
𝒅𝒇 + ∫ [𝑺𝒙𝒙(𝑪𝑶𝑷)𝟐 − 𝑺𝒙𝒙(𝑻𝑹)𝟐]𝟎.𝟓𝒇=𝟐

𝒇=𝟎.𝟒𝟖
𝒅𝒇  (1) 
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 𝑹𝑴 = 𝑺𝑮𝑶,𝑭𝑳(𝑪𝑶𝑷)  (2) 

 𝑻𝑹 = 𝑪𝑶𝑷 − 𝑹𝑴  (3) 

 subject to       
𝟒 ≥ 𝑶 ≥ 𝟐

𝟗𝟎𝟎 > 𝑭𝑳 > 𝟏𝟎𝟎
  (4) 

PSD (Sxx) was determined by the Welch periodogram. The genetic algorithm (Matlab ga.m) converged in about one minute for 

each trial (in an I7-5500U Windows Notebook). Output variables were SD (standard deviation) and SP (speed) for both RM and 

TR. Speed was calculated as the arclength of RM or TR excursion divided by time (20s). 

3 Results and discussion 

Figure 1 illustrates a time series and PSD obtained with the proposed RM/TR decomposition for Vrksasana in the ML direction. 

The RM and TR speed and standard deviation were compared between groups using the Mann-Whitney-U test after verifying 

that the data was not normally distributed. RM and TR data were considered as independent observations, as well as the AP and 

ML directions. However, SD and SP were regarded as dependent observations, and significant α<0.05 was dived by two by 

applying a Bonferroni correction for multiple observations. Vrksasana rambling SD in the ML axis presented statistical 

differences between groups (median, interquartile range), CG (4.72, 2.42), YG (3.39, 1.14), effect size η2=0.532, p=0.011. 

Regarding angular kinematics, Yoga practitioners showed a higher lumbar bending and hip abduction angle in Vrksasana. For 

Natarajasana, YG presented a higher hip flexion and hip extension torque. Therefore, the proposed COP decomposition method 

was able to identify cortical adaptations associated with reducing rambling variability in the mediolateral axis of Vrksasana 

posture, suggesting the emergence of supraspinal feedforward motor learning effects mediated by Yoga training. Additionally, 

biomechanical adaptations were also observed in the Yoga practitioners in the control of the hip and lumbar joints. 

 

Figure 1: Upper panel, example for COP and its rambling and trembling components for Vrksasana, ML direction. Bellow, the 

Power Spectrum Density. The shaded areas correspond to the domain used to set the error integrals of the GA optimization for 

adjusting the Savitzky-Golay filter parameters. 
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EXTENDED ABSTRACT

1 Introduction

The number of falls caused by loss of balance is increasing nowadays due to the aging society. The main risks of falling are
the inactive lifestyle, attenuated vision, impaired medical conditions and the increased reaction time [1]. The stabilization of the
human body during balancing is carried out by the central nervous system (CNS). Understanding the operation of the CNS and
identifying the critical factor might help to predict and prevent the potential falls and shorten the rehabilitation period. The goal
of the current research is to estimate the reaction time during standing on a rolling balance board in the frontal plane and to create
a simple model of the CNS.

2 Methods

The rolling balance board consists of two wheels and a board made from plywood. The wheels are available with different radii
R. Balancing trials at different dynamic conditions were performed by 15 healthy young adults. Six wheel radii (R=50, 75, 100,
125, 150, 200 mm) and three stance widths (d=0.15, 0.25, 0.40 m) were tested. First, the participants were asked to perform a
response time test with the so-called complex reaction time tester (CRTT). CRTT consists of a box providing 10 randomly timed
light flashes and as a response, a pedal has to be pushed with the dominant foot of the participant. The second task was to perform
balancing trials on balance boards of the selected wheel radii and stance width sizes. The subjects were asked to balance for at
least 30 s long with open eyes, stretched legs and arms behind the back (Fig. 1c). To avoid the effect of multiple-try learning, the
participants had only one attempt for each combination of R and d, therefore a subject performed maximum 3× 6 = 18 trials.
The trials were recorded with OptiTrack motion capture system and analyzed in Matlab environment. The successful R and d
combinations of subject S1 are denoted by black filled marker in Fig. 2, the unsuccessful trials are shown by white marker with
black edge.

Figure 1: a) Two degree-of-freedom mechanical model of the task. b) Three degree-of-freedom mechanical model of the task. c)
Standing on the rolling balance board.
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Subjects found the balancing task easier for large wheel radius and small stance width and they employed ankle strategy, which
corresponds to a 2-degree-of-freedom (DoF) mechanical model shown in Fig. 1a. The human body is modeled as a four-bar
linkage mechanism. As the task becomes more challenging (e.g., by setting smaller wheel radius), ankle strategy is replaced
by hip strategy, which can be described by the 3-DoF mechanical model shown in Fig. 1b. During the stabilization process, the
receptors of the visual and vestibular sensory organs provide information about the inclination angle and angular velocity of the
human body segments and the balance board. Therefore, the operation of the CNS is described by full state feedback. A feedback
delay is introduced in the control loop in order to model human reaction time. For the sake of simplicity, the time delay of the
visual and vestibular system is estimated with the same value, τ .

3 Results and discussion

The linearized equation of motion is a system of delay-differential equations. If the data of the human subject and the balance
board or equivalently, the coefficients of A(s) are fixed, then the stability of the trivial solution is affected by the control gains
and the delay only. There exists a stabilizing domain of the control gains for each fixed τ delay. The size of the domain decreases
as the delay increases and completely disappears at the so-called critical feedback delay. The critical delays were calculated for
different R and d pairs applying the so-called multiplicity-induced-dominance method [2]. The result, namely the stabilizability
diagram is shown in Fig. 2 with gray scale.

The critical delays are related to the balancing ability of humans. If the reaction time of a subject is smaller than the critical
delay associated with a certain combination of R and d, then the subject might be able to balance successfully. However, if
larger than the critical delay, balancing is not possible due to the absence of the stabilizing control gains. The reaction time of
the participants were estimated by comparing the stabilizability diagram and the distribution of the successful and unsuccessful
trials. The reaction time is the average of the critical delays associated with the successful and unsuccessful R and d combinations
next to the dashed separating line.

Figure 2: Stabilizability diagram.

Excluding four outlier subjects, the correlation coefficients is 0.78 between the measured response time and the estimated reaction
time based on the 2-DoF model and 0.76 between the measured response time and the estimated reaction time based on the 3-DoF
model. The average reaction time of the 15 subjects is 222 ms for the 2-DoF and 238 ms for the 3-DoF mechanical model. The
estimated reaction times are slightly larger than the reaction time during quiet standing (90-125 ms). During standing on the
balance board, more complex signals are to be processed which may require longer time interval. The correlation coefficients
suggest that the full state feedback might be an appropriate model of the operation of the CNS.
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EXTENDED ABSTRACT 

1 Introduction 

Ligaments are passive structures that connect articulating bones and keep joints assembled. Mechanically they are much like 

muscles but with no active contractile element. When treating grade-III ankle sprains, patients are often instructed to immobilize 

the affected ligaments in order to allow reparative healing. However, signs of functional instability are apparent after long periods 

of immobilization. Several studies have compared the efficacy of controlled range of motion walker boots and braces against 

traditional casts in reducing muscle activity. Nevertheless, the integrity of the affected ligaments such as the anterior talofibular 

ligament (ATFL) during conservative and functional treatments of ankle sprains is a subject that is not yet fully understood. 

Therefore, the objective of this study was to use musculoskeletal dynamic simulations to study the effectiveness of functional 

articulated ankle foot orthoses (AFO) in providing muscle stimulation, while simultaneously protecting the affected ligaments 

and accelerate recovery. 

2 Method 

The methodology of the study includes both experimental protocols as well as modeling and simulation. Kinetic and kinematic 

data were collected from 10 healthy college-aged, consented subjects (male to female ratio 5:5) as they walked on six force plates 

under three walking conditions: i) regular unconstrained, ii) rigid right foot CAM Walker boot (0° plantar-flexion/dorsi-flexion), 

and iii) right foot CAM Walker with range of motion of 20° plantar-flexion and dorsi-flexion. Kinematic data were collected 

using an 11-camera video-based motion analysis system and a 27 retro-reflective marker set used to define the foot, shank, thigh, 

pelvis, torso, and head segments for each subject as they walked (Figure 1). Reflective markers for the heel, and lateral/medial 

malleolus were placed on the surface of the boot for the rigid AFO and articulated AFO conditions. EMG data were collected 

using surface electrodes from three superficial muscles: right tibialis anterior, right extensor digitorum longus, and right peroneus 

longus. Subjects performed 5 trials for each of the 3 conditions mentioned above for a total of 15 gait trials per subject.    

 

Figure 1: Lower limb marker set with AFO  Figure 2: Lumped torso/lower limbs modeling and CMC 

  simulation examples performed in OpenSim 

Walking simulations were generated using a musculoskeletal biomechanics simulation software, OpenSim [1]. A musculoskeletal 

model with two legs and a lumped torso segment that includes 23 degrees-of-freedom and 92 muscle-tendon actuators was 

utilized in this study. The equations and parameters to model the ligament and the force-length curve are based on the study in 

[2], and the ligament modeling techniques used in AnyBody Modeling System [3]. To generate walking simulations, the model 

was scaled to best fit the subject mass and marker positions. The Inverse Kinematics tool was then used to calculate limb segment 

positions and joint angles based on the experimental marker position data. The resultant kinematics and experimentally measured 

ground reaction forces were imported into the Computed Muscle Control (CMC) tool to calculate the muscle activations, lengths, 

and forces for all three experimental walking conditions. Experimental EMG was used to validate the simulation-generated 
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muscle activity. Special attention was given to the tibialis anterior (TA), the extensor digitorum longus (EDL), and the peroneus 

longus (PL). Figure 2 shows examples of CMC simulations with and without the CAM Walker boot. Note, muscles in red are 

active and muscles in blue are inactive.  

3 Results  

Experimental TA EMG magnitudes increased when walking with the rigid AFO and increased further when walking with the 

articulated AFO. EDL EMG magnitudes increased only when walking with the articulated AFO. PL EMG magnitudes decreased 

when walking with the rigid AFO but decreased less when walking with the articulated AFO. Comparison of the experimental 

EMG and the simulated muscle excitations from OpenSim for the three walking conditions studied resulted in no overall 

significant difference for the TA and EDL muscles and a significant difference for the PL (Figure 3 shows 0° plantar-flexion/dorsi-

flexion condition). High variability was encountered when comparing the collected and simulated muscle activities of the 

peroneus longus. For the AFO effect on ATFL force, the ankle joint exhibited natural plantarflexion during the swing phase of 

walking without the AFO, and little and reduced ankle range of motion with the rigid and articulated AFO, respectively, Figure 

4. The simulated ATFL ligament forces decreased when wearing a rigid AFO during walking and there was little change in ATFL 

ligament force loads between walking with the rigid and articulated AFO, Figure 4. 

     

     

 

 

 

 

 

 

 

4 Discussion 

 The goal of this study was to validate the efficacy of functional articulated AFOs in providing muscle stimulation while 

simultaneously protecting the affected ligaments and promote a quick recovery. It can be inferred from the results that the use of 

an articulated walker showed a slight increase in muscle activity, which can help stimulate the muscles throughout functional 

treatment of ankle sprains. The ATFL forces showed a decrease with the rigid boot condition and a minor increase in these forces 

when range of motion was introduced. Though the study showed that muscle stimulation and ligament integrity was achieved, it 

was conducted with uninjured subjects, which could limit the generalizability of the results to patients with ankle instabilities. 

5 Conclusion 

The research performed in this study indicates that the use of articulated ankle foot orthoses does in fact stimulate important 

muscle activity necessary for proper motor control while in turn maintaining the ATFL forces at a minimal. Altogether, the results 

demonstrated the importance of musculoskeletal dynamic simulations and how they may serve as a tool to uncover the 

biomechanical causes of movement abnormalities and help design improved treatments. This study conveys evidence that 

functional treatment should be preferred over conservative immobilization.  
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Figure 4: (Upper curves) Subject 2 CMC simulation right ankle joint 

kinematics for the no boot (red), rigid boot (blue), and articulated boot 

(green) conditions. Arrows point to the respective angle curves during the 

swing phase. (Lower curves) ATFL ligament force loads for walking without 

(red) and with the AFO (blue) are similar. 

 

Figure 3: Subject 2 average simulated muscle 

activations from CMC (solid line +/- 1 SD dot-

ted) and average experimental EMG (grey) for 

the right TA (top), EDL (middle), and (PL) for 

walking with the AFO. 
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EXTENDED ABSTRACT 

1 Introduction 

Kinematic analysis (KA) is a powerful tool used in the study of biomechanical systems, since it allows for the computation of 
the orientation of the model segments, trajectory of specific points, angular displacement of joints, among other variables of 
interest. Two approaches can be used to perform the kinematic analysis of multibody systems, namely, forward (FK) or inverse 
kinematics (IK). In the first case, the model is guided using linear and angular drivers calculated in a previous step. Afterwards, 
the consistent generalized coordinates are obtained by imposing the kinematic constraints that define the model. On the other 
hand, in IK the position and orientation of each segment is computed by minimizing the difference between the experimental 
data and a set of points belonging to the model, namely the coordinates of the system or other points of interest. This procedure 
allows for the fitting of the computational model to the experimental data. 

In biomechanical models, FK should be applied with caution due to experimental errors associated to the measurement, in 
particular soft tissue artifacts (STA) [1]. The STA refers to the motion of the markers on the surface of the body with respect to 
the underlying bones due to inertial effects, skin deformation and sliding, gravity and muscle contraction [2]. Moreover, STA 
is task- and subject- dependent, which makes standard filtering techniques ineffective.  

Andersen et al. (2009) showed that the use of methodologies to minimize the errors between experimental markers and model 
points result in significant differences in the kinematic outcomes when compared with standard methods. On its turn, these 
differences can lead to large errors and inconsistencies during dynamic analysis [3]. Consequently, a method that enables to 
adjust the model to the system in study is of particular interest for the biomechanics area, since it can minimize the errors 
associated to the experimental acquisition of anatomical points that constitute the biomechanical model. To address this issue, 
several methods have been proposed, being the most common based on optimization techniques [4]. 

In this work, a new approach based exclusively on kinematic constraints and least-square minimization is proposed to perform 
the kinematic analysis of biomechanical systems. The methodology considers the use of angular coordinates to model the 
kinematic drivers of the system. These coordinates are referred to as ‘mixed coordinates’ and complement the set generalized 
coordinates used by the Fully Cartesian Coordinates (FCC) formulation adopted [5]. This method enables to perform an IK 
analysis and to determine simultaneously the angular drivers of the model. It allows also for the minimization of the error 
between experimental and computational points, ensuring a better fit of the model to the experimental data. 

2 Methods 

The mixed coordinates (MC) formulation is defined as a combination of FCC with generalized angular coordinates. These 
coordinates represent the angular degrees-of-freedom of the kinematic pairs of the model, which will be calculated during the 
IK analysis. Therefore, MC allow for the simultaneous computation of the generalized coordinates of the biomechanical model 
and its joint angles.  

However, this approach leads to an augmented vector of generalized coordinates of the system, since a new vector with length 
equal to the total number of angular degrees of freedom of the system is appended to the already existent vector of generalized 
coordinates. Thus, the use of additional kinematic constraint equations, which will be introduced in the form of trajectory 
constraints, is required. These trajectory drivers will map the experimental coordinates of points of interest of the model. 

An important aspect of MC is that it only requires a change in the structure of the angular kinematic constraint equations of the 
FCC formulation, since the angle between the vectors of the bodies become a generalized coordinate of the system. Hence, its 
contribution to the Jacobian matrix of the system is different from the one in FCC, as it includes the terms dependent of the 
angular coordinates. 

The MC were applied in the analysis of 3 gait cycles of a healthy female adult. Kinematic data were collected in the Lisbon 
Biomechanics Laboratory at Instituto Superior Técnico using 14 infrared Qualisys cameras with a sampling frequency of 100 
Hz. The acquisition protocol was based on the PlugInGait model. The location of the hip joints was determined based on 
regression equations [6], whereas ankle, knee, elbow, and wrist joints were calculated based on the coordinates of the 
respective lateral and medial markers. 
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To compare the error associated with each approach, namely, FCC and FCC+MC, the root mean square errors (RMSE) 
between the experimental coordinates of each joint center and its estimation based on the consistent generalized coordinates of 
the model were computed. Additionally, the CPU time required to perform each kinematic analysis was also measured. 

3 Results  

On average, the errors associated with the position of the joints were significantly lower in the IK analysis with the FCC+MC 
formulation. The accuracy for the IK method was approximately 3 orders of magnitude smaller than those obtained using FK 
for all the joints. Regarding the CPU times, the FK analysis with FCC took 4.49s and approximately 4 iterations per time frame 
to obtain the solution using the Newton Raphson method. On the other hand, the IK analysis with MC required 12.95s and an 
average of 8 iterations. These differences may be explained by the higher dimension of the Jacobian matrix in the MC 
formulation (FK: 𝚽𝐪[58x48], IK: 𝚽𝐪[82x60]). However, it is important to note that the processing time spent to obtain the initial 
angular drivers in the FK case was not included, while in the IK approach the time already consider all the required steps to 
perform the kinematic analysis and obtain the joint angles and generalized coordinates of the system. 
 

Table 1: Root Mean Square Error (RMSE) between the experimental coordinates of each joint center and its estimation based 
on the consistent generalized coordinates of the model 

  RMSE (mm) 

 Neck Shoulder Elbow Wrist Hip  Knee Ankle 

Formulation  - Right Left Right Left Right Left Right Left Left Right Left Right 

FCC 5.7 9.0 8.7 8.2 9.2 13.5 15.3 14.5 14.6 24.6 24.8 20.9 21.9 

FCC + MC 0.005 0.007 0.007 0.005 0.005 0.004 0.004 0.009 0.004 0.006 0.006 0.015 0.017 

4 Discussion 

In general, the accuracy of the kinematic reconstruction using the FCC with MC is significantly higher than when only FCC 
are used. This issue is the direct result of the minimization of the distance between the model points and experimental data 
introduced by the method. Moreover, the IK analysis considering the FCC+MC formulation presents the advantage of 
computing the angular drivers that rule the system, without a preprocessing step.  

The use of IK analysis enables also to reduce some of the experimental errors introduced by the use of markers to track the 
human body, namely the SMA. By simultaneously minimizing the distance to all joints, the method finds a position that better 
depict the experimental movement, correcting possible displacements of the markers. In addition, this method avoids one of 
the main drawbacks of the FK analysis, namely the propagation of errors along the kinematic chain, i.e., experimental errors 
will be passed continuously to the child bodies, resulting, in general, in higher distances between the experimental and model 
points in the distal joints. 
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EXTENDED ABSTRACT

1 Introduction

The flexibility of protein is a significant factor for protein conformation and the ligand binding with protein modifies its flexibility.
The larger flexibility causes more complex conformational properties and changes its activity. Since 2019, the new coronavirus
Sars Covid19 has caused pandemics being harmful in many ways. The main protease (Mpro) of Sars Covid19 is known as one
of the potential drug targets whose investigation is worthwhile for potential drug development. In particular, Mpro selecting as
a target is relatively safe because it has no human homolog, which decreases the probability to target a wrong host protein [1,
2]. Three domains are contained in the Mpro protomer and the N-terminal finger (1-9) normally has a significant influence
on its activity [3]. However, the conformation and the influence of the Mpro monomer are still not clear. In this work, we
investigated the mutation effects of the Mpro of the new Sars coronavirus based on kinematic flexibility analysis. Compared
with the possibilities of molecular dynamics investigations, our kinematic method can analyze larger molecules and requires less
computational costs.

2 Kinematic flexibility analysis

Kinematic flexibility analysis (KFA) is an efficient, fast method to analyze the conformational flexibility and transition of 3D
macromolecules and a helpful tool to investigate how their flexibility influences their function. Kinematically, hydrogen bonds
and hydrophobic interactions can be modeled as holonomic constraint. KFA treats all covalent bond (dihedral angles) as degrees
of freedom q and the non-covalent interaction as holonomic constraints Φ(q)=0, see [4]. Consistent with these holonomic
constraints, the velocity constraints read dΦ/dt = Jq̇ = 0.

Through singular value decomposition of the Jacobbian matrix J, a basis for its nullspace can be determined. This nullspace is
identical to the current conformation tangent space. The nullspace contains the addmissible velocities q̇ and it provides the the
required information for the molecular rigidity analysis and for conformational transitions.

3 Kinematic analysis of Sars Covid19 Mpro mutation

The new Sars coronavirus Mpro dimer has two protomers, as shown in the Fig. 1(A) (pdb: 6Y2E), the one protomer of Mpro is
in detailed in cyan, the other one surface is shown in grey. For the catalytic activity, dimerization is a significant process. The
N-finger of protomers interacts with the other protomers to stabilise the dimer. The structure of the Mpro protomer is shown in
the Fig. 1(B) and Fig. 1(C), O. S. Amamuddy et al. [1] studied Sars Mpro conformation and estimated possible mutation position.
Based on these mutation positions, we apply the kinematic transition method to analyze the flexibility change after the mutation.
These mutation positions are: A7, G15, M17, V20, T45, D48, M49, R60, K61, A70, G71, L89, K90, P99, Y101, R105, P108,
A116, A129, P132, T135, I136, N151, V157, C160, A173, P184, T190, A191, A193, T196, T198, T201, L220, L232, A234,
K236, Y237, D248, A255, T259, A260, V261, A266, N274, R279 and S301L (as shown in the Fig. 1(B)). In the Sars Covid19
Mpro, each protomer contains three domains, the domain I and domain II contain the residues number 10-99 and residues number
100-182, respectively, the domain III connects with domain II by a linker loop with about 15 residues.

Different inhibitor ligands and different mutations are investigated in this work with regard to their ability to influence the
flexiblity of the Sars Covid19 Mpro. The pdbfile 6Y2E is Mpro without ligand binding and the other pdbfiles is Mpro with one
ligand. For the flexiblity, which influence the activity and conformational property of Mpro, the root mean squared fluctuation
(RMSF) of the atom positions is a good indicator. Fig. 1(D) shows the ratio between the root mean squared fluctuation (RMSF)
values of Mpro with ligands and without ligands. Most of the RMSF ratios are less than 1 which means that the binding of
Mpro with the ligand cause the RMSF value to decrease. This indicates that the Mpro becomes more rigidified when binding
with the ligand. In particular for the domain I and domain II, the pdbfile 6LU7 with inhibitor N3 shows a large decrease of the
RMSF value. On the other hand, the pdbfile 5R7Z residue 214 shows an increased RMSF value and also causes the neighbouring
residues to have larger RMSF values than the other regions. Another peak is shown in the N-finger region which stabilise the
dimer. Fig. 1(E) shows the RMSF ratios between Mpro with mutation and without mutation. The mutation position is marked in
the figure. The pdbfile 6LU7 shows a substantial increase in the RMSF value after mutation, the mutation increases the Mpro’s
flexibility to peak factors of three in the domain II and domain III. The pdbfile 5R81 shows largely increased RMSF values in
the domain III. Also around the mutation positions, the RMSF values increase largely. Furthermore, the pdbfile 5R80 and 6Y2F
show decreased RMSF values after the mutation in the domain I and II.
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Figure 1: new coronavirus Sars Covid19 Mpro mutation analysis based on the kinematical method. (A) new coronavirus Sars
Covid19 Mpro monomer(pdb: 6Y2E, Mpro without ligand binding), the one protomer of dimer is in detailed in cyan and the other
one surface is in the gray. (B) each protomer contains three domains and the residue 1-7 is the N-finger (orange), the mutation
position is marked with residue name and residue number. (C) The rotated view for the conformational view of the SARS-CoV-2
main protease protomer. (D) the RMSF value ratio between with ligand and without ligand for different pdbfile. (pdb: 5R7Z,
5R7Y, 5R80, 6Y2F, 5R81 and 6LU7, Mpro with ligand binding) (E) the RMSF value ratio between Mpro mutation and without
mutation for different pdbfile. The positions of the residues which undergoing mutations are highlighted by the marker

In summary, based on kinematic flexibility analysis, we investigate the flexibility of new Sars Covid19 Mpro and its mutations.
The Sars Covid19 Mpro has three domains, and the Mpro becomes more rigidified when it binds with ligands, in particular in
the domains I and II. The flexibility decrease upon ligand binding yields potential for the development of drugs. After mutation,
the pdbfile 6LU7, 5R7Y, 5R81 and 5R7Z show an increased flexibility because of the residue mutation, while the flexibility
of the pdbfile 6Y2F and 5R80 is decreased in the domains I and II after mutation. The larger flexibility cause more complex
conformational properties which may make it more dangerous.

Acknowledgments

The authors gratefully acknowledge financial support by DFG grant LE 1841/5-1 to SL, and NIH award GM123159 to HvdB.
HvdB is partially supported by a Mercator Fellowship from the DFG in LE 1841/5-1.

References

[1] O. S. Amamuddy, Gennady M. Verkhivker and Ö. T. Bishop. Impact of emerging mutations on the dynamic properties
the SARS-CoV-2 main protease: an in silico investigation. Journal of Chemical Information and Modeling. 2021

[2] S. Chen et al. Mutation of Gly-11 on the Dimer Interface Results in the Complete Crystallographic Dimer Dissociation of
Severe Acute Respiratory Syndrome Coronavirus 3C-like Protease. Journal of Biological Chemistry. 283, 554–564, 2008

[3] Kneller, D.W., Phillips, G., O’Neill, H.M. et al. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed
by room temperature X-ray crystallography. Nat Commun 11, 3202, 2020

[4] X. Chen, S. Leyendecker, H. van den Bedem. Kinematic Flexibility Analysis of Active and Inactive Kinase Conformations
Proceedings in Applied Mathematics and Mechanics, 2020

37



Please contact the conference organisers at eccomasmultibody2021@mm.bme.hu if you require an accessible file, as the files provided by
ConfTool Pro to reviewers are filtered to remove author information, and this filter technique unfortunately cannot preserve screen reader

information. However, the filter can easily be disabled by the organisers.

For Peer Review Only

ECCOMAS Multibody Dynam
ics 2021

ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Assisted Walking with Hybrid Orthosis Using Functional Electrical Stimulation
Albert Peiret1, Marcel Jané1, Rosa Pàmies-Vilà1, Josep M. Font-Llagunes1

1 Department of Mechanical Engineering and Biomedical Engineering Research Centre
Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain

email1@address

EXTENDED ABSTRACT

1 Introduction

Neurological disorders affect body mobility, strength and coordination, and can significantly impact the quality of life. For
instance, suffering a spinal cord injury (SCI) generally result in permanent lower-limbs paralysis. Robotic assistive devices, such
as lower-limb exoskeletons, can help SCI patients to recover their mobility and autonomy in everyday life. Moreover, advances in
neuroprosthetics have shown that functional electrical stimulation (FES) can be used to control joint motion by inducing muscle
contraction through electrical assistance [1].

Hybrid assistive devices that combine wearable robotics and neuroprosthesis present some advantages compared to robotic assis-
tive devices. Namely, FES-induced muscle contraction activates muscle metabolism, which delays muscle atrophy and promotes
cardiovascular activity. However, determining the optimal control strategy of hybrid devices is still a challenge. Here, we present
an optimization framework for musculoskeletal models with hybrid assistive devices using the direct collocation method.

2 Methods

The direct collocation method discretizes the optimal control problem in time and formulates a nonlinear optimization problem,
where the dynamic equations become the constraints in the optimization. The goal is to find the controls (i.e., device assistance
and muscle excitation) and the trajectory (i.e., the state of the system at each time-step) that minimize a cost function.

The cost function can represent the muscle metabolic cost so that energy expenditure is minimized, in addition to the device
assistance, and other trajectory-tracking terms. Therefore, the cost function can be written as a

J =
N

∑
k=0

(
∑

coord.
wqi(qi,k−q∗i,k)

2 +∑
vel.

wvi(vi,k− v∗i,k)
2 + ∑

muscl.
waia

2
i,k + ∑

joints
w fi f 2

i,k

)
(1)

where qi,k and vi,k are the i-th generalized coordinate and velocity of the multibody system at the k-th time-step, q∗i,k and v∗i,k are
their reference value obtained from experiments, ai,k ∈ [0,1] is the i-th muscle activation, and fi,k is the i-th joint torque of the
assistive device. Here, the weights were chosen to be wq = wv = 1, and wa = w f = 0.01.

A musculoskeletal model of the lower-limbs is used to determine muscle activation and optimal device assistance. The limbs
are modelled with rigid bodies articulated at the joints, which are represented by ideal kinematic constraints. The model has 10
DOF’s of the 2D motion in the sagittal plane, and 18 muscles with the Hill-type muscle model proposed in [2], the equations of
which were smoothed to help optimization solver convergence.

The right leg was used to investigate the level of assistance needed for ankle dorsiflexion during the swing phase. Experimental
data of a healthy subject was used as reference trajectory for the optimization. The foot-ground contact forces were also measured
and used as externally applied forces.

The model and the optimal control problem were implemented with the software package OpenSim, which uses the software
library IPOPT as interior-point optimization solver [3].

3 Results

Several optimal control problems were solved using different maximum values for the muscle activation of the tibialis anterior,
amax = {1,0.1,0.01}. These values represent different degrees of FES assistance of the muscle. Figure 1 shows the ankle angle,
the muscle activation and the joint assistive torque for the optimal solutions.

Results show that a lower maximum activation requires a higher torque assistance. However, that results in a lower ankle
dorsiflexion angle due to the fact that both, angle and torque, are present in the cost function. The higher the torque, the higher
the cost associated to the assistance. Therefore, the cost associated with the trajectory-tracking term will only decrease until an
equilibrium point in the optimization, where both terms balance each other.

Naturally, the weights of all the terms in the cost function could be adjusted so that the tracking error is minimized and higher
torque values can be reached. However, it is worth noting that the physical meaning of these weights should be taken into account
in order to find a meaningful optimal solution.
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Figure 1: Optimization results for assisted ankle dorsiflexion using different values of maximum muscle activation amax of the
tibialis anterior during swing, i.e., from toe-off (t = 0.75s) until heel-strike (t = 1.1s)

4 Conclusions

It was shown how the assistive torque at the ankle joint increases for lower levels of tibialis anterior assistance. Combining
muscle contraction and active torque assistance can help to better understand how hybrid devices can combine wearable robotics
and neuroprosthesis. However, solving optimal control problems with musculoskeletal models using hybrid assistance requires
some special attention when defining the weight associated to each cost, where the physical meaning of the variables shall not be
ignored. In future steps, a more representative model of FES assistance will be added to the optimization.
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EXTENDED ABSTRACT 

1 Introduction 

Human motion is one of the objects of study in biomechanics, which involves complex interactions between the neuromuscular 
and skeletal systems. Understanding these interactions is necessary not only for medical applications but also for sports sciences 
or for planning physical conditioning activities. Fundamental quantities of interest in human motion research are the 
intersegmental forces and moments acting at the joints, which represent the net loads that act at each biomechanical joint, and 
muscle forces. Computational biomechanical models based on multibody dynamics are powerful tools that enable the evaluation 
of these quantities in the human body, whose in vivo or in vitro measurement is, when possible, extremely difficult [1]. In the 
context of human swimming, current biomechanical models are mostly based on simplified models of specific parts of the human 
body [2]. Due to limitations on motion acquisition, especially in the air-water interface, they are kept simple and are hardly able 
to simulate the broad range of motion of many of the anatomical segments relevant to swimming. Another fundamental data for 
the evaluation of internal forces are the external forces acting on the human body during swimming, herein referred to as 
hydrodynamic forces. Unlike terrestrial motion where these external forces are easily measured using force platforms, the 
determination of the external forces in water is very difficult [2]. This work provides a methodology that allows overcoming the 
difficulty in obtaining the external forces acting on the swimmer, by estimating them using the Swimming Human Model 
computational tool, SWUM [3]. These forces distributed on the swimmer biomechanical model anatomical segments are used, 
together with the model kinematics whose movement is acquired experimentally in the swimming pool, to obtain the internal 
forces in the model, as depicted by Fig. 1.  

 

Figure 1: Flowchart for the methodology developed for the estimation of the hydrodynamic forces and their use for the inverse 
dynamic analysis. 

2 Methods 

The kinematic data is obtained at the Biomechanics Laboratory at University of Porto, LABIOMEP-UP, for a 25-year-old male 
swimmer with 70.3 kg, and 1.80 m. By using several underwater and above water infrared cameras the swimmer has 38 markers 
which allow for the reconstruction of his swimming motion. By following the dataset of Dumas et al. [4] and performing 
appropriate anatomical segments scaling the characteristics of the anthropometric model are a good match to those of the 
swimmer subject. Due to the lack of experimental methods to acquire the hydrodynamic forces, these are not obtained 
experimentally. 

The markers spatial positions are first obtained using direct linear transformations being the trajectory of each one of them 
obtained after applying a double-pass Butterworth filter with appropriate cutoff frequencies. The anatomical segments geometry 
is scaled from the markers and the intersegmental angles variation with time is also obtained. A kinematic analysis of the 
biomechanical model, with the intersegmental angles driven by the data acquired is performed to obtain the model positions, 

40



For Peer Review Only

ECCOMAS Multibody Dynam
ics 2021

velocities and accelerations at every time instant of the complete swimming cycle. The kinematic data obtained and the 
anatomical segment geometric data are supplied as input files for the SWUM [3] computational tool, which is used in turn to 
estimate the hydrodynamic forces on the swimmer model. This tool uses the slice method to obtain forces in each slice of each 
biomechanical segment of the model. The set of center points for the anatomical segment slices and the distributed hydrodynamic 
forces constitutes the kinetic data required for the inverse dynamic analysis. The joint torques and the joint ‘reaction’ forces are 
obtained by performing the inverse dynamic analysis for which the kinematic data, obtained in the first part of the method, and 
the kinetic data from SWUM are the required input.  

3 Preliminary Results 

The methodology presented and discussed in this work is applied to a swimmer using a freestyle technique, crawl. In Fig. 2 two 
frames of an animation of the swimmer motion, in which a graphical representation of the hydrodynamic forces, obtained with 
SWUM, are displayed. The results obtained allow for the evaluation of the internal forces in the human body biomechanical model 
which are of particular interest to understand what is the contribution of each anatomical segment for the thrust of the swimmer 
and what are the forces required to develop such movement. In the process, the estimation of the ‘joint reaction’ forces allows 
to have an estimation of the health risks to develop this swimming technique 

 

Figure 2: Frames of the model of the swimmer in crawl, as obtained in Swimsuit, with the hydrodynamic forces displayed. 

The full length paper provides a more complete description of the results obtained and a critical analysis of the swimming 
technique used by the subject. The results also allow for planning a training programme that allows the swimmer to develop a 
more efficient motion or to mitigate his injury potential. 

4 Preliminary Conclusions 

A full-body model of the human body is proposed for inverse dynamic analysis of the lower limbs. To overcome the limitations 
on the acquisition of the external forces acting on the human body, the simulation software developed by Nakashima et al. [3] is 
used to determine the hydrodynamic forces, allowing the computation of the intersegmental joint forces and joint torques. The 
whole methodology proposed is novel and it allows for a consistent inverse dynamic analysis of biomechanical models subjected 
to distributed hydrodynamic forces. The results of the external hydrodynamic forces support the validity of the interface 
developed between Swumsuit [3] and the LHBM [2], as the dynamic response developed at the lower limbs is similar between 
the results obtained here and those reported, for the same swimming motion [3].  
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EXTENDED ABSTRACT 

1 Introduction 

The temporomandibular joint (TMJ) is a highly active articulation during daily activities. Knowledge of the TMJ dynamics is 

significant for understanding the mechanism of joint instabilities and refining implant design. Musculoskeletal models provided 

a non-invasive tool in predicting muscle, ligament, and joint contact forces. However, most existing musculoskeletal models of 

the mandible were generic without correlations with subject-specific kinematic measurements [1]. To overcome this limitation, 

we are working on a multibody modeling approach of TMJ based on clinical experiments (ultrasound, CBCT, EMG). As a 

preliminary study, a CBCT-based method to obtain TMJ kinematics was introduced in this abstract. Its obtained data was then 

utilized to drive a musculoskeletal model of the mandible. 

2 Anatomical and kinematic measurements 

Four volunteers (3 men and 1 woman, 24-26 years old) without TMJ disorders were recruited. All these subjects provided written 

informed consent to participate. Their mandible anatomical data were acquired using a CBCT scanner (NewTom VG, NewTom, 

Italy). During the scanning process, each subject was asked to keep clenching in the intercuspal position. 

 

Figure 1: A. Measurements of mandibular kinematics. B. Flexible multibody modeling of the jaw muscles 

The mandibular movements of each subject were then recorded using the WinJaw system (Zebris Medical GmbH, Isny, 

Germany), shown in Figure 1A. Before kinematic measurements, a maxillary plate with three landmarks was glued on the 

maxillary teeth, and a Trios intraoral scanner (3shape, Copenhagen, Denmark) was used to record its relative position to the 

upper dentition. The obtained geometries were then co-registered with the CBCT scans based on the anatomical markers (the 

point between the first upper incisors, marginal ridge, etc.). The initial positions of the lower incisor and the left/right condyle 

were also recorded for kinematic analysis. 

Next, the volunteers were required to perform three trials of maximal opening-closing together with protrusion. Each movement 

started from the maximum intercuspation position, ensuring the initial coincidence between the maxillary and mandibular 

coordinates. Furthermore, we assumed that there exist another three landmarks that were attached to the mandible rigid. These 

points were coincident with those in the maxillary plate at the beginning of each test.  During the mandible movements, time-

dependent positions of the virtual landmarks were recorded for further analysis. For validation, the mandible kinematics was 

also measured by the WinJaw system, using a mobile transmitter sensor glued to the mandibular teeth. Its position relative to the 

receiving unit that fixed on the head was recorded during each cycle. 

Based on the obtained virtual landmark positions  ( 1,2,3)i i =q  , the translational and rotational components of mandible 

movements were described by a rotation matrix R   and a translation vector v  . Using the least-square method provided by 

Sodervist et al. [2], the problem of determining R  and v  is equivalent to minimizing the following formula: 

 
3

strt strt

1

( ) ( ),i i T i i

i=

+ − + − Rq v q Rq v q  (1) 

42



For Peer Review Only

ECCOMAS Multibody Dynam
ics 2021

where 
strt

iq  denotes the position of each landmark in maximum intercuspation location.  

3 Simulations of the jaw open-close movements 

A three-dimensional musculoskeletal model of the human mandible was developed using our in-house multibody dynamics 

simulation code [3-4], shown in Figure 1B. The generic model was based on the published geometrical and physical properties 

[5]. With the help of CBCT scans, the modeling parameters were linearly scaled based on the distance between the TMJ condyles. 

The mandible model was actuated by a set of 24 Hill-type actuators, including the main fascicle groups of the masseter, 

temporalis, pterygoid and digastric muscles. Each muscle fascicle was discretized by the flexible cable element [3]. By this 

means, the muscular mass was distributed along its fibers, and its active-passive force was calculated based on a typical Hill-

type relation. Each joint was modeled as a spherical condylar shape coinciding with a frictionless surface. Here, the contact 

surface was fitted to the first 10mm of the measured condylar path during protrusion tests.  

The simulations of the jaw open-close movements were carried out following the procedure below. First, the three-dimensional 

rotations of the mandible rigid were applied as the kinematic inputs. The mandible motion was underactuated at this step, and its 

translational components were determined by the passive stiffness of the jaw-closing muscles. The forward dynamic simulations 

were then performed using the calculated fascicle length as the target values. Finally, the obtained incisor displacement was 

finally compared with experimental measurements to validate the simulation procedure. 

 

Figure 2: Comparisons of the measured condylar paths (A) and the simulated incisor movements (B) of a typical subject 

4 Results and conclusion 

As shown in Figure 2A, the TMJ pathways recorded agreed with the Zebris measurements in the first 10mm. The observed 

differences during the late phase of opening were mainly due to the registration error. The mandibular incisor displacements 

based on the forward dynamic simulations were depicted in Figure 2B. Compared with the measured incisor movements, the 

proposed musculoskeletal model can reproduce the mandible kinematics of each subject with the RMS error of 3.7±1.3mm. 

The results partially demonstrate that the proposed approach successfully depicts the subject-specific dynamic behavior of the 

mandatory system, suggesting its potential use in improving the diagnosis and treatment of the TMJ disorders. 
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EXTENDED ABSTRACT

1 Introduction

Biomolecular simulations require extensive computational resources in all cases. Even so, simulating large time histories ,in order
of seconds, remain elusive even with the employment of supercomputers. The underlying biological phenomena have a multiscale
nature. The processes range from atomistic to microscale. This multiscale nature infeasibly increases the computational time for
acquiring the solution of the dynamic system. In this work a scaling approach, based on the method of multiple scales, is further
developed to accomplish a long term simulation of a cellular system. This multiscale approach results in massive reduction in
computational time. The test case is the development of a mesenchymal stem cell nucleus during the adipogenic differentiation.
This process, observed in 15 days, was simulated in less than 1.5 hours on a typical desktop computer. This drastic reduction
in computational time allows for the dynamic study of mechanical properties, such as nucleus membrane stiffness, that are very
difficult to experimentally measure with much certainty.

2 Test Case and Model

The experiment consists of the induction of human bone marrow-derived mesenchymal stem cells (hMSCs) to form adipocytes
using chemical factors[1]. The extent of differentiation effect on the hMSC nucleus was observed for 15 days through fluorescent
imaging (Fig. 1). Following image acquisition, fluorescent images were processed for nuclei morphology and lipid production
[2].

Figure 1: Composite images of nuclear remodeling. The
LMAC proteins (red) and DNA (blue) in the nuclei of human
MSCs were imaged at different days of adipogenic differen-
tiation. The images were superimposed to demonstrate the
distribution of the nuclear envelope proteins and reduction in
size of the nuclei.

The system was modeled as one stem cell nucleus in two di-
mensions, owing to the two-dimensional nature of the data col-
lected in experimental observation. Intra-nuclear particles, such
as chromosomes and proteins, are coarse-grained to 250 rigid
circular particles, as shown in Fig. 2. Their interactions are
modeled as contacts and impacts. The membrane is modeled
as one continuous elastic band under tension. The actin micro-
filaments are modeled as springs that provide structural support
for the membrane. The effects of the viscosity of nucleoplasm is
modeled as viscous damping due to drag. The random Brownian
motion is included with its associated temperature based forces.
The effects of lipid accumulation is modeled as external forces
on the nucleus. The unscaled model have the form of

M(q) q̈ = D(q) q̇ + K(q) q + ΓΓΓl (1)

where K denotes the actin microfilament stiffness, D denotes the viscous damping, and ΓΓΓl denotes all other large active forces
(Contact, Membrane, External, and Forces associated with Brownian motion).
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Figure 2: Nuclear model initial configuration.

The multiscale nature of this problem stems partially from the
length scale, ranging from micrometers to nanometers. More
importantly, it stems from the disproportionate size of the large
forces to the small masses, femtograms, of the rigid spheres rep-
resenting the material contained in the stem cell nucleus. The
stiffness of the actin microfilaments are also orders of mag-
nitudes larger than viscous damping of cyto-and nucleoplasm.
This type of problem is notorious for the unreasonably long com-
putational time required [3], which has made computer simula-
tion of these phenomena over lang time range infeasible[4].

Conventional methods for reducing computational time are gen-
erally of consists of two categories: coarse-graining of some
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form[5], or reducing the order of the differential equations [6].
However, even with these approaches, simulating a phenomenon at the nano- or microscale for a period of days cannot be at-
tempted even by deploying supercomputers [4].In this work, a previously developed scaling approach[7], based on method of
multiple scales (MMS)[8], is further developed and used in conjunction with coarse-graining to simulate the stem cell nucleus for
long time period of 15 days. By using multiple scaling factors the magnitude of small generalized active forces can be brought to
the same scale as the mass term independently of the large generalized active forces [7], preserving their effects in the large time
frame. Herein a new analysis of a two scaling factor approach is presented and employed to obtain the solution. Employing this
scaling approach to the model in (1) results in the scaled model with the form

M(q)q̈ = a2 D(q)q̇ + a2b2 K(q) + a2b2 ΓΓΓl (2)

where a2 = 3.2× 10−10 and b2 = 1.6× 10−12 are two scaling factors.

3 Conclusion
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Figure 3: Different stages of the simulation corresponding
with experimental data. The results show remarkable align-
ment between the simulation and experiment.

With this scaling approach, it is possible to stretch the integra-
tion time step to large values. This is accomplished by choos-
ing a large characteristic time unit. Herein the time scale of
1ks = 1000s delineates the fast and slow dynamics. This allows
the capture the dynamics most important over the long term. This
is in extreme contrast with previous works [9, 7, 10] that did not
breach the timescale of 1ms = 10−3s. The chosen time scale is
in proportion to the observed time frame of the phenomenon of
weeks. The simulation of the unscaled model requires a compu-
tational time of 1 minute per 1 nanosecond of simulation time
history. Based on this estimate, the total computational time re-
quired will be on the order of ≈ 1012 days. The scaling approach
reduces these extreme computational requirements down to 1.5
hours on an HP Z230 workstation desktop with an Intel Xeon
E3-1225 v3 processor. The agreement between the simulation
and experimental results, as shown in Fig. 3 and discussed fur-
ther in [2], validates this approach.
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EXTENDED ABSTRACT 

1 Introduction 

The human middle ear is composed of three bones, i.e. the malleus, the incus and the stapes. These bones are the smallest 

in the human body and are connected to each other and to the temporal bone by means of ligaments and tendons. Since the 

middle ear is the smallest and one of the most complicated biomechanical structures in the human body, its modelling is espe-

cially demanding and difficult. Sometimes the middle ear has to be modified to improve the hearing process. The use of implant-

able middle ear hearing devices (implants) is among the most innovative methods of hearing loss treatment. The main objective 

of this paper is to explain the role of the active implant in the middle ear structure. 

The human middle ear (HME) is usually modelled as a multi-degree-of-freedom model of lumped masses by the finite 

element method (FEM). This model type is more difficult to create but, on the other side, it provides deeper insight into the 

system dynamics. Lumped mass models with 3 [1], 4 [2] and even 6 [3] degrees of freedom (dof) are usually built to analyze 

sound transfer through the intact human ear. In most cases, lumped mass models are solved numerically. It is practically impos-

sible to find in literature the description of an analytical solution for the system with more than 3dof [4].  

The modelling of the middle ear with an active implant requires the use a multi-degree-of freedom model. Such device 

is implanted in the human ear to treat sensorineural hearing loss. The implantable middle ear hearing device (IMEHD) is usually 

attached to the long process of the incus. This means that at least a 3dof model of the middle ear and a 2dof system of the 

IMEHD, which is an active element of the implant, are required to describe the middle ear implant (MEI).   

2 Electromechanical model of implanted middle ear 

The proposed model of the middle ear (Figure. 1) consists of three masses: the malleus (mM), the incus (mI) and the 

stapes (mS) that are connected to each other and to the temporal bone by the incudo-malleal joint (IMJ),  incudo-stapedial joint 

(ISJ) and ligaments: the anterior malleal ligament (AML), the posterior incudal ligament (PIL) and the annular ligament (AL).  

 

Figure 1: 6dof model of the middle ear with an active implant 

Damping and stiffness properties of the elements are denoted as c and k, respectively. In the model, the AL has nonlinear 

stiffness characteristics. Stapes motion is excited by an active implant whose a floating mass transducer (FMT) is the main part. 

46



The FMT consists of a magnet (mm) suspended in a metal case (mc) with dashpots (cm) and springs (km). The magnet is moved 

by electromagnetic field generated by an electrical circuit with resistance R and conductance L supplied by a voltage source. 

EEM denotes the electromotive force that generates an electro-dynamic force (P(t)) acting in the mechanical subsystem. The FMT 

is fixed to the incus long process with a clip whose linear damping and stiffness coefficients are denoted as cclip, kclip. Moreover, 

nonlinear stiffness is introduced with the coefficients kclip2 and kclip3 to model characteristics of couplers various designs. 

The governing differential equations of the implanted middle ear (IME) in a dimensional form are as follows: 
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where: x and q denote the mechanical coordinates and the electrical charge, respectively. Moreover, the system coefficients are 

defined as follows: 
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Then the model described by equation (1) was transformed into a dimensionless form, which was solved analytically with the 

help of the multiple time scale method [5]. As a solution, modulation equations were obtained, which were used to analyze the 

influence of parameters on the dynamics of the system. The obtained results were verified with the use of a numerical model. 

3 Summary 

A multi-degree-of-freedom nonlinear biomechanical model of the middle ear should generate interesting nonlinear phe-

nomena, especially when the system is coupled to the electrical system of the implant. The interaction between the mechanical 

and the electrical system will additionally give rise to new phenomena that have not yet been described in literature. The coupling 

coefficient defined as a constant or nonlinear relation plays the main role in the system dynamics. This paper investigates periodic 

solutions of a nonlinear model of the middle ear with an active implant. A multi-degree-of-freedom model is used to obtain a 

solution near the first resonance. The model is solved analytically by the multiple time scales method. Next, the stability of 

periodic solutions is analyzed in order to determine the influence of parameters on the dynamics of the middle ear with the active 

implant. Moreover, some parameters of the middle ear structure are investigated with respect to their impact on periodic solu-

tions. 
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EXTENDED ABSTRACT

1 Introduction

Control of balance is one of the most important motor skills, which is necessary in almost all every-day activities. Several
factors influence an individual’s ability to balance, for example genetics, age, emotional state, strength, muscle coordination
and flexibility, and training status. The majority of the above mentioned factors can be associated to two important features of
balancing, namely, the reaction delay of human nervous systems and to the sensory dead zones of human perception. In the
mechanical models of balancing, the corresponding controller is an event-driven intermittent time-delayed control.

The principles of general human balancing tasks is often aimed to understand through stick balancing on the fingertip. In this
paper, human stick balancing is investigated in terms of reaction time delay and sensory dead zones for position and velocity
perception using a special combination of delayed state feedback and mismatched predictor feedback as control model.

2 Control force models

The mechanical model of stick balancing is derived in the anterior-posterior plane of the balancing subject, which is equivalent to
the mechanical model of the inverted pendulum-cart system. The inertia of the arm segments is modeled with a cart of equivalent
mass me, whereas the mass of stick is m, its length is l. The stick is connected to the cart via a planar joint in the model, and the
subject exerts the control force F on the cart in order to stabilize the stick in the upward vertical position. The governing equation
was derived using the generalized coordinates x and ϕ . Since x is a cyclic coordinate, it can be eliminated from the equation and
one gets

ϕ̈ − 6mgl(m+me)−3m2l2ϕ̇2 cosϕ
4ml2(m+me)−3m2l2 cos2 ϕ

sinϕ =− 6ml cosϕ
4ml2(m+me)−3m2l2 cos2 ϕ

F. (1)

Several control concepts have appeared in the literature to model the control action during stick balancing. We consider two main
concepts: state feedback and predictor feedback, and the combination of these. The simplest state feedback takes the form of a
delayed proportional-derivative (PD) controller, which uses the stick angle and stick angular velocity in the feedback loop [1].
Therefore, the control force depends on the delayed state variables of the stick, namely ϕ(t − τ) and ϕ̇(t − τ), where τ is the
delay. The delayed PD controller without sensory dead zone describes human balancing on a global scale well, however, sensory
dead zones play an important role in the local dynamics. Here, dead zones are applied for each feedback variable and the control
force switches on and off according to whether the state variable(s) is (are) in or out of the dead zone(s). Πϕ is the threshold for
angular position perception ϕ , and Πϕ̇ is the threshold for angular velocity perception ϕ̇ .

Research projects on human motion control have also investigated whether the central nervous system employs internal models
in motor control [2, 3] to predict the actual state of the balanced object. Results support the existence of such a forward model
in the sensory preprocessing control loop. In case of perfect predictor feedback, the feedback loop has zero delay, however, the
switching of the control force when state variables exit the dead zone occurs with a delay since within the dead zone the actual
state of the stick is unknown and hence no prediction can be made.

An intermediate model between delayed PD and perfect predictor feedback with sensory dead zone is the case when the control
force has nonzero delay, which is smaller than the delay of the switching. This can also be interpreted as an imperfect predictor
with delay mismatch. The imperfection of the predictor is described by the parameter delay mismatch, which provides a transition
between perfect predictor feedback (zero delay mismatch) and delayed state feedback (mismatch equal to switching delay).

3 Methods

The above explained control models are investigated numerically for a l = 40 cm stick, and the maximum admissible switching
delay (critical delay) is determined based on a practical stabilizability concept. Milton et al. [4] performed blank–out tests during
stick balancing and showed that the time delay between the offset of the blank-out and the first corrective movement is about
230 ms (range: 220-240 ms for three expert stick balancers). Based on the available results in the literature, we take the reference
reaction time delay during stick balancing to τref = 230 ms, which just coincides with τcrit,PD associated to delayed PD feedback
without sensory dead zone for l = 40 cm [5]. In what follows, τref = 230 ms is compared to the critical delay obtained by
numerical analysis of the different mechanical models.
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4 Results

The solution of the governing equation for delayed PD feedback subject to sensory dead zones resembles to the swirling motion
of measured time signals. Still, this model fails in the sense that when more realistic delays are used (> 220 ms) then no stable
solution can be found for stick length l = 40 cm.

The stabilizability diagrams are shown in Fig. 1a) for the perfect, and in Fig. 1b-d) for the imperfect predictor feedback with
different feedback delays. The critical delays for the perfect predictor feedback model are significantly larger than τref. This
suggests the perfect predictor feedback may not model well human stick balancing.

When imperfections are introduced in the model by increasing the delay of the control force, then the critical delay becomes
smaller. The region of physiologically possible sensory thresholds that yield critical delay close to the reference value τref can be
determined as the intersection of the τcrit surface and the red plane τref = 230 ms. Additionally, the solution of the equation of
motion for particular parameter combinations again resemble to the seemingly chaotic motion observed in measured time signals.

(a) (b)

(c) (d)

Figure 1: Critical time delays for the perfect a) and imperfect b-d) predictor feedback control models of a l = 40 cm long
inverted pendulum as function of sensory thresholds, where τFB stands for delay in the feedback. Intersection with the red plane

τref = 230 ms marked with yellow dots shows physiologically possible sensory threshold values.

Acknowledgments

The research reported in this paper and carried out at BME has been supported by the NRDI Fund (TKP2020 IES, Grant No.
BME-IE-BIO and TKP2020 NC, Grant No. BME-NC) based on the charter of bolster issued by the NRDI Office under the
auspices of the Ministry for Innovation and Technology.

References

[1] J. Milton, J. L. Cabrera, T. Ohira, S. Tajima, Y. Tonosaki, C. W. Eurich and S. A. Campbell. The time-delayed inverted pen-
dulum: Implications for human balance control. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(2):026110,
2009.

[2] M. Kawato. Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6):718-727,
1999.

[3] B. Mehta and S. Schaal. Forward models in visuomotor control. Journal of Neurophysiology, 88(2):942-953, 2002.

[4] J. Milton, R. Meyer, M. Zhvanetsky, S. Ridge and T. Insperger, Control at stability’s edge minimizes energetic costs:
expert stick balancing. Journal of the Royal Society Interface, 13(119):20160212, 2016.

[5] G. Stepan. Delay effects in the human sensory system during balancing. Philosophical Transactions of the Royal Society
A, 367:1195-1212, 2009.

49



Please contact the conference organisers at eccomasmultibody2021@mm.bme.hu if you require an accessible file, as the files provided by
ConfTool Pro to reviewers are filtered to remove author information, and this filter technique unfortunately cannot preserve screen reader

information. However, the filter can easily be disabled by the organisers.

For Peer Review Only

ECCOMAS Multibody Dynam
ics 2021

ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Optimal control of a human driver in highly dynamic driving scenarios
Michael Roller1, Staffan Björkenstam2, Vanessa Dörlich1, Monika Harant1, Marius Obentheuer1, Sigrid Leyendecker3, Joachim

Linn1

1 Mathematics for the Digital Factory
Fraunhofer ITWM

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
[michael.roller,vanessa.doerlich,monika.harant,marius.obentheuer,joachim.linn]@itwm.fraunhofer.de

2 Geometry and Motion Planning
Fraunhofer-Chalmers Centre

Chalmers Science Park, 412 88 Gothenburg, Sweden
staffan.bjorkenstam@fcc.chalmers.se

3 Institute of Applied Dynamics
Friedrich–Alexander University Erlangen–Nürnberg

Immerwahrstrasse 1, 91058 Erlangen, Germany
sigrid.leyendecker@fau.de

EXTENDED ABSTRACT

1 Introduction

To simulate the human driver in early stages of product development, digital human models (DHM) are widely used in automotive
industry. Detailed finite element (FE) models of the human body are used to simulate the highly dynamic impact and resulting
injuries in the human body in crash simulations [1]. DHM based on multibody system (MBS) kinematics are widely applied
in reachability investigations and ergonomic assessment of the driver [2]. These types of models are only used in (quasi-)static
scenarios, where the car is standing or driving with constant velocity. In dynamic driving maneuvers like cornering, sudden
braking or lane change and pre-crash scenarios, neither FE nor simple MBS kinematic models are applicable. On one hand,
FE models are comparatively difficult to control and the simulation times are too long. Simulation times for dynamic driving
maneuvers are in the range of seconds, while in crash simulations only milliseconds are computed. On the other hand, purely
kinematic MBS models are not able to take dynamic loads and contact forces into account. Furthermore, the motion generation
is complicated, because these models are usually based on forward or inverse kinematics.

2 Methods

In this work, we will present an approach for the enhancement of a multibody based DHM to generate human like motions
for a highly dynamic impact simulation. The human is modelled as a multibody system, where the limbs are rigid bodies and
connected via joints. Hill muscles are used to implement digital versions of the real muscles in the human body and to actuate the
multibody system. An optimal control algorithm, which is able to handle opening and closing of contacts, is developed in order to
generate the dynamic human motion. It allows for the simulation of dynamic interactions of the DHM with the car interior such
as the seat, pedals or the steering wheel as well as the impact of the car. In this approach, only some basic boundary conditions
have to be prescribed. These include the sitting posture of the human at starting time with two hands on the steering wheel and
the trajectory of the car. Using a certain objective function, the optimal control approach generates the desired control (muscle
actuation) and the human motion. This approach has already been applied successfully to simulate dynamic motions of workers
[3, 4]. A time continuous optimal control problem with two phases α ∈ {1,2} is defined abstractly by the following formulas

min
q,u

J =
∫ t2

t0
φ (q, q̇,u, u̇)dt (1)

s.t.
∂L
∂q

(q, q̇)− d
dt

∂L
∂ q̇

(q, q̇)+F(q, q̇,u)+GT (q)λλλ +HT
α(q)µα = 0 t ∈ [tα−1, tα ] α ∈ {1,2} , (2)

g(q) = 0 t ∈ [t0, t2] , (3)
hα(q) = 0 t ∈ [tα−1, tα ] α ∈ {1,2} , (4)

The variable q represents the temporal trajectory of the MBS between the starting time t0 and the end time t2. The control signals
for the muscles and the joint torques are combined in the variable u. In (1), the objective function J is introduced, where φ is a
measure for the state of the system. As a side constraint, the constrained Euler-Lagrange equations (2)-(4) have to be fulfilled,
where the function L represents the Lagrangian of the system. The function g summarizes the constraints and the variable λλλ

is the corresponding Lagrangian multiplier. Both are active across both phases, while the function hα and the corresponding
Lagrangian multiplier µα are only active in one of the phases. Additional equality and inequality constraints can be included in
the optimal control problem as boundary conditions. Altogether, the optimal control problem is an optimization problem and the
solutions are temporal trajectories of the MBS q, the control signals u and the Lagrangian multipliers λλλ ,µα . In order to solve
the optimal control problem, the continuous problem (1)-(4) is discretised into a non-linear programming problem using discrete
mechanics, see [6] for more details. This approach is called DMOCC (discrete mechanics and optimal control with constraints).
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The discrete equations of motion derived in this way have been shown to be superior to standard discretisations since they
preserve characteristics of the continuous system such as conservation of momentum and a good energy behaviour. This results
in very stable integrators, which in practice allows for the use of large time steps when solving the problems. However, additional
technical difficulties had to be solved [4, 5] in order to include the correct behavior at the phase transition in the discrete domain.

3 Application

As application case we investigate the dynamic scenario of sudden impact of a car with the DHM as the driver. The DHM is a
MBS, which is able to translate and rotate freely in space and is actuated mostly by joint torques, while the arms are actuated
by Hill muscles. The constraint function (3), which acts across both phases, fixes the hands to the steering wheel, the feet to
the pedals and the hip to the seat. The simulation is split in two phases, as defined in (2). In the first phase (α = 1) the car
is accelerated from starting at standstill. No additional constraint function (4) is needed. At the beginning of the second phase
(α = 2), the car stops immediately to simulate the impact by adding an additional dynamic constraint h2. Therefore, the kinetic
energy of the car is absorbed completely by a phase specific constraint force. The DHM has to use the muscle and control torques
to eliminate the kinetic energy during the second phase as there are no additional constraint forces. In Figure 1, a posture of

Figure 1: Shows two snapshots of the optimized motion, one before and one shortly after impact.

the manikin in the second phase shortly after the impact is visualized. It can be observed that the upper body of the manikin is
moving towards the steering wheel at the beginning of the simulation. This is caused by a lack of strength of the muscles in the
arms and the control torques in the lower back to eliminate the remaining kinetic energy immediately.

4 Discussion

In this work we present a method to include dynamic impact scenarios in a discrete optimal control framework based on DMOCC.
It has to be noted that the motion was generated by the DMOCC method using only the constraints described in section 3. Thus,
no tedious and time-consuming forward kinematic positioning of the manikin has to be performed. Additionally, all specified
muscle forces and actuation signals are computed by this method as a by-product, which can be used in a further physiological
evaluation.
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EXTENDED ABSTRACT

1 Introduction

Exoskeletons are receiving increasing attention not only in the medical field as a rehabilitation tool, but also in industry to improve
working conditions. Spinal exoskeletons are seen as a promising tool to assist workers with lifting tasks and reduce their muscle
activity and thus their risk of low back pain. The development of wearable robots is challenging because they must be extensively
tested on the human body. In [1], a method is presented to optimize the support of a lower body exoskeleton while it is worn
by subjects. This method is difficult to apply to spinal exoskeletons because the subjects would have to lift objects repeatedly
over a long period of time while the robot applies high forces on them. In this work, we illustrate an alternative approach by
using multibody dynamics and optimal control to optimize the passive elements (PO) of an existing prototype [2] in simulation
as well as evaluating a new design concept (DC) that incorporates motors at the hip joints. Both the human and the exoskeleton
are simulated in an all-at-once approach that allows the calculation of forces applied by the exoskeleton and the muscle activity
needed by the user to reproduce recorded lifting motions. Previous work applied this method successfully to a simple generic
exoskeleton to analyze its influence on the dynamics of lifting motions using different cost functions [3].

2 Modeling the Human and Exoskeleton

The recorded lifting motions used in the optimization are symmetrical. This allows us to reduce the complexity of the system
by modeling the human, exoskeleton, and box as symmetric rigid multibody systems in the sagittal plane. The human model
consists of 11 degrees of freedom (DoF). Both arms and legs are lumped together. For the recorded persons, subject-specific
models were created, based on anthropometric measurements. The human model is actuated by muscle torque generators (MTG)
[4]. The exoskeleton model has 9 DoF and the dynamic parameters were derived from CAD models of an existing prototype. It
generates torques at the lower back by 3 carbon fiber beams and at the hip joint by passive elements with a nonlinear torque-angle
relationship. Mathematical models replicating the behavior of the passive elements are included in the optimization problem. For
DC, a motor is attached to each hip joint to evaluate their effect on the support and contact forces between user and exoskeleton
which affects their alignment. The weight of the pelvis module is increased by 3 kg to account for the additional actuators.

3 Optimal Control Problem Formulation

The lifting motion of the human model wearing the exoskeleton is set up as a 3-phase optimal control problem (OCP). In the first
phase, the user stands in an upright position, bends down and makes contact with the box. In the second phase, the user generates
enough force to lift the box. The last phase starts when the box leaves the ground and ends when the user holds the box in an
upright position. The OCP is formulated as follows:

min
q,q̇,z,α,u,p

Ψ[q, q̇,z,α,u, p] :=
3

∑
i=1

(
Ni

∑
n=0
‖Wq(q(ti,n)−qREF

i,n )‖2 +
∫ ti+1

ti
φ(q, q̇,z,α,u, p)dt

)
(1)

s.t. M(q)q̈+Gi(q)T λ = τ(q, q̇,z,α,u, p)−C(q, q̇) (2)
α̇ = ((um−αm)/Tm)m=1,...,Nm (3)

f (q,z, p) = 0 (4)
gi(q, q̇,z,α,u, p)≥ 0, i = 1, . . . ,3 (5)

with q, q̇, and q̈ the joint positions, velocities, and accelerations, respectively. The number of shooting nodes of phase i is denoted
by Ni. The motion to be tracked is given for time ti,n by the joint positions qREF

i,n and the fitting accuracy is specified by a weighting
matrix Wq. The algebraic states z and the system of equations (4) define the state of the beam. The parameters p describe the
design of the passive elements of the exoskeleton. The controls u are the neural excitation of the MTG. Eq.(3) are the MTG
activation dynamics with activation level α and (de-)activation time constant T . In case of DC, the torque profile of the motors
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is a control as well. The number of MTG is given by Nm. The equation of motion of the constrained multibody system is given
by (2) with mass matrix M, constraint jacobian Gi, and unknown force variables λ . The function C contains the centrifugal,
gravitational and Coriolis forces. The generalized forces are denoted by τ consisting of the joint torques and forces generated by
the MTG and the exoskeleton. The Constraints (5) include, among others, position constraints, constraints on hand-to-box, box-
to-floor, and foot-to-floor contact forces, human/exoskeleton alignment regulations and limits on parameters, states and controls.
The objective function (1) consists of a least squares term for tracking the recorded motion and a Lagrange term enforcing the
reduction of human joint moments and pelvis contact moment. The OCP is discretized using direct multiple shooting and the
resulting NLP is solved with SQP and active-set method.

4 Results

For the prototype optimization (PO), parameters describing the behavior of the beam and the passive elements were optimized.
For DC, motor torque profiles were optimized as well. The results are compared to the original configuration (O) of the prototype.
We present exemplary the results of one subject here. Many quantities were computed, Fig. 1 illustrates the most important ones.
In both cases, the support of the exoskeleton was further improved (reduction of integr. lumbar moment: 16.5% (PO), 13.5%
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Figure 1: Grey dotted line: original configuration of the prototype; Grey solid line: optimized prototype; Black line: optimized
new design concept. From left to right: Torque acting at the base of the 3 beams; torque produced by one passive element (and
motor); Normal contact force acting at the pelvis with prescribed limit [5] (dashed line); Contact moment acting at the pelvis.

(DC), 11.8% (O); reduction of integr. hip moment: 14.1% (PO), 12.4% (DC), 10.1% (O); each value specifies the reduction with
respect to results obtained by human-only simulation (without exoskeleton)). The support of DC is lower than PO because the
limit on the pelvis normal force, the most restrictive constraint for the support, is reached at lower force/torque generation of the
exoskeleton because of the increased pelvis module weight. As intended, adding the motor resulted in a high reduction of the
moment acting at the pelvis contact, staying within [-3.6 Nm, 0.6 Nm] and yielding a very good alignment of exoskeleton and
user. For PO, the contact moment decreased compared to O during the bent-down phase indicating a good balance between the
force/torque generation of the beams and the passive hip elements, but became higher during standing.

5 Discussion

In this work, we present a method to optimize and evaluate design concepts for exoskeletons using an optimal control formulation.
This setup can be used to optimize the design of passive elements described by multiple parameters and motor torque profiles
that serve as guidelines for the next prototype. Note that these calculations can be done without having a real prototype. It also
provides the analysis of contact forces between user and exoskeleton, the load reduction, and the actuation patterns of the user.
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EXTENDED ABSTRACT

1 Introduction

Often in the modelling and control of biomechatronic assistive devices, it is assumed that the human and device are connected
rigidly [1, 2]. For exoskeletons, this assumption ignores important phenomena like misalignment between device actuator and hu-
man joint axes of rotation [3]. Despite this, there are few investigations into human-exoskeleton compliance. Sánchez-Villamañán
et al. [4] simulated a compliant human-exoskseleton interaction for the leg using an ideal spring; however, only the elasticity due
to soft tissue deformation was considered. Therefore, the purpose of this research was to develop and assess (via simulation) the
performance of an integrated human-exoskeleton model in which, via unilateral contact equations, the device cuffs and elastic
straps (Velcro™) are responsible for the transfer of energy between subsystems.

2 Dynamic Model of Integrated Human-Exoskeleton

The human biomechanical and exoskeleton (Technaid® Exo-H3) mechatronic subsystem models were adopted from a whole-
body integrated model we had designed prior [1] (Fig.1A). The passive human knee and ankle joints (θha,θhk) were modelled
as muscle torque generators with no input activations [5]. Friction at the rotating exoskeleton joints (θea,θek) involved both a
Coulomb and viscous component [1]; a DC brushless motor (ideal actuator) applies torques to the knee. The unilateral contact
forces that held the human shank within the Exo-H3 were assumed to arise from a combination of the following interactions: 1)
movement of the posterior aspect of the shank relative to two synthetic cuffs attached to Exo-H3 link; 2) penetration of plantar
heel/toe landmarks through the exoskeleton foot pad; 3) stretching of velcro straps (four total) which compress the human foot
and leg against the Exo-H3 foot pad and cuffs respectively. For each contact element, an exoskeleton-fixed vector în defined the
direction along which penetration was evaluated and contact forces would act, e.g. applying a load to and stretching the lower leg
strap results in a force on the exoskeleton along îvl. The foot pad and cuff elements were modelled using a linear spring-damper
Elasto Gap function with arbitrarily high stiffness and damping values (k = 106 N/m, d = 103 N·s/m). The tension generated
by any strap was modelled by a second-order polynomial function, T(`(t);kα ,kβ , `0) = kα(`(t)− `0)+kβ (`(t)− `0)

2 ∀`(t)≥ `0
where `0 is a resting length parameter that affects tautness and `(t)≡ `(Θ(t)) was the strap length that depends on the kinematic
configuration given by Θ ∈ R4 where Θ = [θea,θek,θha,θhk] are the 4 degrees of freedom. No tension was developed when
`(t) < `0. The novel geometric derivation of ` assumed the leg and foot could be comprised of linked cylinders with a known
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Figure 1: A) Schematic of the integrated human-exoskeleton model featuring compliant interactions. B) An overview of the
approach to modelling elastic strap deformation, via cylindrical wrappings, and energy transfer through a stiff cuff component.
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radius, around which a given strap can wrap (assuming deformation in the în direction; Fig. 1B). Since the cylinder could intersect
the strap at an angle (e.g. îTvl îh 6= 0 in Fig. 1), elliptical geometry had to be considered.

3 Simulation Experiment and Results

A simulation similar to the dynamometer setup in [1] was used herein to assess performance of the exoskeleton contact model.
The exoskeleton knee motor (an ideal actuator) was responsible for driving the desired motion (knee extension ramp followed by
knee flexion ramp at constant velocity of ±3.2 m/s). Proportional-derivative (PD) control was used to manipulate the knee motor
torque, which was capable of reaching the manufacturer-specified peak torque before saturating (±152 Nm). The data in Bader
and Pearcy [6] was used to identify the elastic gains kα and kβ . Three different variations of Velcro® materials were tested:
Standard (kα = 0 N/m, kβ = 8.59 · 104 N/m2), “Kric Krac” (kα = 249 N/m, kβ = 1.99 · 104 N/m2), and Elasticated (kα = 121
N/m, kβ = 2.33 ·103 N/m2). Additionally, for each of the aforementioned types, a “Loose” and “Secured” condition was tested;
the secured condition required the resting length of each velcro strap be reduced by 10-50 mm depending on location.
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Figure 2: Representative data showing ankle (+’ve = plantarflexion) and knee (+’ve = flexion) trajectories for simulations using
A) rigid connections and B) the compliant model presented herein (results presented for the secured Standard Velcro®).

Representative data for joint kinematics that follow from the use of rigid connections and Standard Velcro® (Secured) are shown
in Fig. 2. Windows of interest in Fig. 2B have been highlighed, i.e. periods where phenomena unique to compliant connections
like overshoot are captured. The average ankle joint misalignment (AJM), calculated using the Euclidean norm between human
and exo ankle joint centre positions, showed a good response (lower AJM) to increases in strap tautness and baseline stiffness.
Not surprisingly, the secured Standard Velcro was best at minimizing misalignments (AJM = 1.48 mm); making the strap loose
substantially increased this error (AJM = 14.6 mm). The worst performance came from the Elasticated straps (loose AJM = 24.0
mm, secured AJM = 12.9 mm) followed by the Kric Krac straps (loose AJM = 16.9 mm, secured AJM = 2.51 mm).

4 Discussion

In general, the addition of multi-point unilateral contact equations to the integrated human-exoskeleton model allowed us to
capture the transient phenomenon that are overlooked when assuming the interactions to be rigid. A notable component of our
model is the ability to replicate design assymetries in the exoskeleton, i.e. rigid cuff versus elastic strap on the posterior and
anterior aspect of segments. This resulted in the overshoot of the human knee in Fig. 2B where the elastic strap was unable to
halt momentum about the knee quickly, without being more taut.
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EXTENDED ABSTRACT

1 Introduction

Neural rehabilitation is a long and complex process that patients undergo after suffering a nervous system injury, such as stroke.
These kinds of injuries usually result in brain cells death and partial loss of mobility and coordination. During rehabilitation, the
patient performs a series of movements and physical exercises that promote neural plasticity, the brain’s mechanism to regenerate
and make new pathways that substitute the damaged connections. Unfortunately, full recovery is almost impossible.

The rehabilitation process is tailored to the patient based on the physician’s expertise, and it evolves with the patient’s needs
and recovery. However, few computational models for rehabilitation have been developed. For instance, Lee et al. [1] trained a
musculoskeletal model of a healthy subject using deep reinforcement learning, and then a prosthetic leg was added to simulate an
injury. Results showed how the artificial neural network that controlled muscle contraction was able to adapt and learn to move
with the prosthetic leg.

Here we show how deep reinforcement learning can be used to control a musculoskeletal model. The algorithm is able to learn
new and stable motions by maximizing the so-called reward function. The nervous system is modelled with an artificial neural
network, and the deep deterministic policy gradient (DDPG) algorithm [2] is used to train the model in a simulated environment.

2 Methods

The musculoskeletal model is a multibody systems with bones represented by rigid bodies and joints actuated by muscles.
Kinematic constraints represent the joints and muscle contraction dynamics is modelled with a Hill-type muscle model. The
neural excitation of each muscle controls muscle fiber contraction, which results in a force being applied to the bones. Motion
control of musculoskeletal models presents some challenges, such as muscle redundancy, which is why a nonlinear optimization
is required to solve the control problem.

Continuous control in deep reinforcement learning can be achieved with the DDPG algorithm [2], which is an actor-critic method.
The actor network learns the optimal policy, while the critic network learns the action–value function. The policy is the function
that calculates the control input (i.e., muscle neural excitation) in terms of the system state (i.e., joint angles, velocities, and
accelerations, as well as muscle activation). The action–value function assesses how well the actor network performs with the
action taken at a given time.

The algorithm learns the actions that maximize the reward function, which is why selecting a meaningful and effective reward
function is paramount in reinforcement learning. The reward can be seen as the reciprocal of the cost. In biomechanics, the
metabolic cost associated with muscle contraction can be represented by muscle fiber activation. Here, the reward function is
expressed as

r =− ∑
joints

(θi−θ ∗i )
2− ∑

muscles
waa2

i (1)

where θ ∗i is the target value of the joint angle θi, and wa is a weight associated with the muscle activation ai ∈ [0,1].

3 Results

A neural controller for a musculoskeletal model of the arm was trained using the DDPG algorithm to reach a target position
with the hand. The 2-DoF model of the arm had 2 segments (upper-arm and forearm), and 8 muscles. The left side of Figure 1
shows the position of the model’s hand on the sagittal plane as well as its joint angles used to shape the reward function. A total
of 300.000 steps with random target positions of the ball were simulated to train the neural controller model using the DDPG
algorithm. These steps were divided in episodes of 200 steps (0.01 seconds/step), which were the allotted time for the model to
reach the ball. Once this termination condition was met, the ball’s position was randomly reseted.

Once the model was trained, a scenario was designed to check the achieved results. The target configuration was set at 54◦ for
θ ∗1 and at 107◦ for θ ∗2 , which was considered to require sufficient range of movement. The results are shown in the right side of
Figure 1, where the absolute distance to the target point is shown.

These results show a little offset present in the X and Y coordinates, but overall the model has been successfully trained. It is
able to reach the target in any position of its reach and it maintains the hand still in the target point for the entire duration of the
episode.
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Figure 1: Motion generated using deep reinforcement using a target position of the hand.

4 Conclusions

The present results are promising and show the potential that reinforcement learning has in finding generalized solutions to biome-
chanical problems. The subsequent line of work that is currently being considered is the use of this reinforcement learning-based
framework as a basis for testing different rehabilitation devices. This could allow the modelling of neuromuscular conditions and
the assessment of the most suitable rehabilitation devices a treatments for a given case.

References

[1] Lee, S., Park, M., Lee, K. and Lee, J., 2019. “Scalable muscle-actuated human simulation and control,” ACM Transactions
On Graphics (TOG), 38(4), pp.1-13.

[2] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D., 2016. “Continuous control
with deep reinforcement learning,” 4th International Conference on Learning Representations, ICLR 2016 - Conference
Track Proceedings, 2016.

57



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Estimation of Intervertebral Efforts via an EMG-driven Multibody Model of the Sorensen Test
Simon Hinnekens1, Christine Detrembleur2, Philippe Mahaudens2, Paul Fisette1

1 Institute of Mechanics, Materials and Civil Engineering
Université catholique de Louvain

Place du Levant 2, 1348 Louvain-la-Neuve, Belgium
[simon.hinnekens, paul.fisette]@uclouvain.be

2 Institute of Experimental and Clinical Research
Université catholique de Louvain

Avenue Mounier 53, 1200 Bruxelles, Belgium
[christine.detrembleur, philippe.mahaudens]@uclouvain.be

EXTENDED ABSTRACT

1 Introduction

Spine is the central hinge of the human body. However, when correcting spinal surgery needs to be done, there is still a lack of ob-
jective information for its planning, such as intervertebral efforts. Indeed, intervertebral discs are the places where critical efforts
occur in the spine. Spine geometry, kinematics and muscle forces are needed to compute these intervertebral efforts. If the first
two are already tackled [1], assessing muscle forces is still challenging. For that purpose, both experimental and mathematical
approaches can be used. Experimental methods consist in measuring directly or indirectly muscle forces through a well-targeted
protocol. Electromyography (EMG) is commonly used although it is an indirect measurement. For these experimental methods,
the number of participants is often limited. On the contrary, purely mathematical approaches allow to develop generic muscu-
loskeletal models often based on the Hill muscle model and for which no experiment is performed. But parameters are numerous
and difficult to estimate, all the more as these models deal with muscle redundancy.

The hybrid approach proposed in this research combines both experimental and mathematical approaches. It is based on an
upfront experiment aiming at making the most of recorded EMG signals in order to develop musculoskeletal models. This
approach was already presented previously for predefined static postures with encouraging results [2].

In this paper, the hybrid approach is used to assess trunk muscle efforts during the Sorensen test. Both static postures and dynamic
motions are evaluated.

2 Materials and Methods

Nineteen healthy men (age: 22.7 ± 2.1 years; mass: 73.9 ± 8.7 kg; height: 1.81 ± 0.05 m) with no back pathology participated
in the experiment. The latter was divided into three parts: (i) three maximal voluntary contraction (MVC) tests, (ii) five loaded
isometric contractions and (iii) six dynamic flexion/extension tasks. All the three parts were carried out in the Sorensen test
posture as depicted on the left in Figure 1. MVC tests were used for normalization. Loaded isometric contractions consisted in
holding the position for 15 sec with a mass from 0 to 8 kg with 2-kg steps applied randomly. Finally, dynamic tasks were carried
out for two cycle durations (4 and 8 sec) and for three masses (0, 2 and 4 kg).

Figure 1: Sorensen test posture. Left: Experiment (UCLouvain 2020). Right: Multibody model in Robotran with muscles in red.

During the whole experiment, muscle activity of six bilateral trunk muscles was recorded using surface wireless EMG (BTS
FREEEMG, 1000 Hz). Raw EMG signals were rectified, filtered using a 5th-order lowpass Butterworth filter with a cut-off
frequency of 10 Hz, smoothed with a 150-ms window and normalized with respect to MVC contraction levels.

A musculoskeletal model of the trunk in the Sorensen test posture was developed using the multibody software Robotran [3]
as illustrated on the right in Figure 1. It derived from a fully articulated thoracolumbar spine and rib cage model published
previously [4]. It included fascicles of lumbar (LP) and dorsal (DP) paravertebral muscles and the quadratus lumborum (QL).
It is worth mentioning that in the current hybrid approach, no optimization method was used for computing muscle forces. For
isometric contractions, finding a unique mathematical solution was ensured with a deterministic muscle effort distribution. The
idea was to use slopes from EMG linear regressions between activation levels (w.r.t. MVC) and lifted masses as indicators of
the activation fraction for each muscle group (LP, DP and QL) for this precise effort situation. Then, inside each muscle group,
the distribution between fascicles was based on their respective maximal isometric forces [4]. For dynamic tasks, muscle forces
found in isometric contractions were used for calibration.
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3 Results and Discussion

According to the previous process, muscle forces evaluation for isometric contractions was therefore equivalent to determine a
unique ‘global muscle force’, the latter being distributed deterministically among all the fascicles. Normalized global muscle
forces (global muscle forces divided by subject’s mass) are depicted on the left in Figure 2 for all masses and all subjects. The
normalized muscle forces were obviously linear w.r.t. lifted masses due the linearity of equations of motion. However, it was
comforting to observe — not showed here — a relatively good linear dependence between activation levels and lifted masses as
reported previously [5]. More interestingly, it can be seen that subjects recruiting more their QL (vertical blue scale) developed
greater muscle forces compared to subjects using more their paravertebral muscles. A physiological explanation is the orientation
of muscle fascicles, i.e. QL fascicles are more oblique to the spine while LP and DP fascicles are more aligned. It impacts directly
the lever arm and consequently the muscle force required to meet the gravity-induced torque.

Figure 2: Loaded isometric contractions in the Sorensen test posture. Left: linear regressions between the normalized muscle
forces and added masses. Right: normalized shear forces at L5/L4 intervertebral disc for three masses (0, 4 and 8 kg).

Intervertebral efforts — compressive, shear forces and bending moment — were also computed in order to evaluate the impact of
individual strategies on them. Similarly to muscle forces, subjects using more their QL generated greater intervertebral efforts.
This result was consistent with the greater global muscle force observed in those subjects and could also be explained by the
orientation of QL fascicles. For illustration, shear forces for the L5/L4 intervertebral disc are showed on the right in Figure 2.
Greater QL recruitment implied greater shear forces as in the subject S4. On the contrary, subjects 10 and 15 produced less
shear forces as they used their paravertebral (LP and DP) muscles more. Shear forces had the greatest magnitude at the L5/L4
intervertebral disc compared to the other lumbar intervertebral discs. It must be reminded that shear forces in the Sorensen test
posture are roughly aligned with gravity and are therefore particularly sollicitated. Compressive forces — not illustrated here
— were also increased for higher QL recruitment and were greater for discs in the lower lumbar spine.

Experimental results and force computations for the dynamic tasks are currently under process and will be presented during the
presentation.

4 Conclusion

Muscle forces associated to loaded isometric contractions in the Sorensen test posture were computed using an hybrid approach.
This approach aimed at making the most of EMG signals from a well-designed experiment in order to develop the associated
musculoskeletal model and the force computation in a deterministic way. Results highlighted the interest of considering individual
motion strategies when evaluating muscle forces, particularly concerning the QL. Indeed, greater muscle forces and intervertebral
efforts were obtained for subjects recruiting more their QL.
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EXTENDED ABSTRACT

1 Introduction

Dynamic modelling and simulation of systems containing components with different physical domain and time-scale is a chal-
lenging task. In a co-simulation setting, the system is treated and modelled as a set of sub-systems which may require the use of
different solvers and time scales suited to the particular physical behaviour of the subsystems. The subsystems only exchange a
reduced set of coupling data at discrete-time communication points separated by time intervals termed macro-steps. However,
the discrete-time communication between sub-systems, has discontinuities and time delays in the coupling variables, which can
affect the stability and accuracy. The stability is impacted by the way data is exchanged between subsystems. Generally, iterative
coupling schemes are more stable compared to their non-iterative counterparts [1]. However, since the available time to carry
out the numerical integration is limited in most of real time applications, non-iterative methods are used. Keeping non-iterative
co-simulation schemes stable is challenging. Using extrapolation and approximation of subsystem input variables is a common
strategy to enhance the performance of non-iterative schemes between communication updates. However, using previous values
of the coupling data to extrapolate inputs can give incorrect predictions specially in non-smooth systems where unilateral contacts
are present.

In these problems, model-based prediction of the coupling variables at the interface between the sub-systems, can increase the
accuracy and efficiency of the simulation. This interface modelling is developed based on a reduced model of the mechanical
subsystem. Such a reduced interface model (RIM) is usually parameterized based on the degrees of freedom associated with the
interface which can give a good insight about the behaviour of the mechanical subsystem. In this work, an enhanced RIM of
non-smooth mechanical systems is introduced which accounts for contact attachments/detachments during the macro step which
leads to more accurate results. In our previous work, the RIM was developed assuming that the state of the contacts will remain
unchanged during the macro step [2]. That concept is extended here which also includes the complementarity conditions in the
reduced model. Moreover, a parametric model is used to demonstrate the advantages of the proposed RIM over other methods.

2 Model-based co-simulation of mechanical systems

Consider a multibody system subjected to unilateral and bilateral constraints. Friction is neglected for now and the unilateral
constraints are associated with normal contact directions. The multibody system is assumed to have n generalized velocities v
and set of nq generalized coordinates q, which are related by the transformation q̇ = Nv, where N is nq×n transformation matrix.
The dynamics equations can be written as

Mv̇ = f+ATλλλ c +BTλλλ i (1)

where M(q) is the n×n the mass matrix, f(q,v) is n×1 array of generalized applied forces (including the Coriolis and centrifugal
terms) and λλλ c is the nc× 1 array of constraint forces and moments. The interactions between the elements of the system are
parameterized by nc set of velocities wc = Av, where A(q) is the nc×n constraint Jacobian matrix. Moreover, the ni×1 interface
forces array λλλ i is containing force and moment components at the co-simulation interface. Depending on the kind of coupling,
the interface force can be either an input or an output of the multibody system model in the co-simulation. The interface of the
multibody systems with the other subsystems is parameterized by ni set of interface velocities wi = Bv, where B(q) is the ni×n
interface Jacobian matrix. We would like to obtain a reduced-order model of the multibody system that includes the interface
velocities wi to estimate the system behaviour between communication points. This will allow us to determine the interface
kinematics in terms of the interface forces λλλ i, and vice versa.

In order to obtain a reduced-order model of the system, first, a transformation should be performed to eliminate the degrees of
freedom in v that do not represent any interaction. The time derivative of the constraint velocities wc and the interface velocities
wi can be written as [

ẇc
ẇi

]
=

[
A
B

]
v̇+
[

Ȧ
Ḃ

]
v (2)

where Ȧ(q,v) and Ḃ(q,v) are the derivative of the constraint and interface Jacobian matrices, respectively. Then, the system
acceleration v̇ can be substituted from Eq. (1) into the Eq. (2), which yields

[
ẇc
ẇi

]
=

[
AM−1AT AM−1BT

BM−1AT BM−1BT

][
λλλ c
λλλ i

]
+

[
AM−1f+ Ȧv
BM−1f+ Ḃv

]
(3)
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In order to detect contact establishments and detachments between the communication points, the state of the contacts should
be updated constantly at each micro step. Considering two different kinds of constraints (bilateral and unilateral), the set of
constraint velocities in the system can be rearranged as wc =

[
wT

b wT
u
]T, where wb contains the bilateral constraint velocity

components, and wu contains the normal contact velocity components associated with unilateral constraints. Now, Eq. (3) can be
rearranged as 


ẇb
ẇu
ẇi


=




Hb HT
ub GT

b
Hub Hu GT

u
Gb Gu Hi






λλλ b
λλλ u
λλλ i


+




bb
bu
bi


 (4)

Bilateral constraints can be defined by the equation as wb = 0 which can be also be stated at the acceleration level as ẇb = 0. On
the other hand, unilateral constraints must be defined by inequalities to allow for possible contact detachment. A complementarity
condition can be defined as 06 λλλ u ⊥ ẇu > 0, where⊥ denotes component-wise complementarity. The bilateral constraint forces
λλλ b can be calculated from the first row of Eq. (4) as λλλ b =−H−1

b

(
HT

ubλλλ u +GT
b λλλ i +bb

)
and be substituted into the other two rows

to obtain the reduced dynamic equations at the interface,




[
ẇu
ẇi

]
=

[
H̃u G̃T

G̃ H̃i

][
λλλ u
λλλ i

]
+

[
b̃u

b̃i

]

0 6 λλλ u ⊥ ẇu > 0
(5)

Depending on how the data is exchanged between the subsystems, either λλλ i or ẇi can be a known value. For example if λλλ i is
known, then the complementarity equation can be solved first by using the first row; and subsequently, the interface acceleration
can be obtained from the second row and integrated with respect to time.

3 Example

A simple planar model of a hydraulically actuated box connected to a disc through a revolute joint was used to demonstrate
the performance of the proposed RIM in a co-simulation setup. The hydraulic actuator is considered as the first subsystem and
the box and the disc are regarded as the second subsystem. As shown in the Fig. 1(a), the box and disc are allowed to slide
without friction. The manoeuvre consists in pushing the box from an initial position where the mechanical parts are at rest on
the horizontal surface toward the ramp until the disc moves upward against the ramp. As shown in the Fig. 1(a), there is an
instant where the disc is in contact with two surfaces. Using the active constraint method introduced in [2], the two contact
points are treated as bilateral constraints during the macro step which makes the system redundant. However, by employing the
proposed method, the contact detachment is taken into account in the reduced model. This can be illustrated in Fig. 1(b) where
the hydraulic force is depicted. As a reference solution, the system is also simulated using zero order hold setup with macro step
h = 0.2 ms. Moreover, both model-based simulations are simulated with h = 10 ms. According to Fig. 1(b), the hydraulic force
obtained from the active constraint method is quite high due to the redundancy of the system at the configuration shown, while
the results obtained using the proposed method is similar to the reference solution.
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Figure 1: (a) Schematic of the planar case study (b) Forces obtained from hydraulic actuator using different approaches
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EXTENDED ABSTRACT 

1 Introduction 

A large number of friction force models have been proposed in the literature to include the different friction attributes and to 

represent the frictional behavior with more detail [1, 2]. Generally, the friction models are divided into two groups, the “static” 

and “dynamic” models. The former group describes the steady-state behavior of friction force by enforcing a constant relationship 

between the relative tangential velocity and the corresponding friction force. The dynamic models are usually more complex 

since they consider an extra state variable, which describes the friction state, governed by a differential equation. Among the 

dynamic friction model, the LuGre model [3] has been gaining popularity and acceptance by the scientific community, since it 

presents a reasonable trade-off between easiness of implementation, range of modeled frictional phenomena, computational 

efficiency, and ability for parameters identification. These characteristics make LuGre model suitable for many applications in 

modeling of multibody mechanical systems. Despite its wide utilization, the LuGre model presents limitations under normal load 

variations, which resulted in its authors to present an amended version [4] to overcome some of those shortcomings. However, 

even the amended version has revealed some physical inconsistencies due to the occurrence of a drift during the sticking phase 

[5, 6]. In this work, a modification to the LuGre friction model is proposed to deal with normal load oscillations without the 

shortcomings of both the original and amended versions of the model. 

2 LuGre Friction Force Models 

The original LuGre model was proposed in 1995 [3] as an advancement of the Dahl friction model [7]. This model considers an 

analogy between the friction phenomena and a bristle deflection. An extra state variable used by the LuGre model, z, represents 

the average of bristle deflection and is governed by the following differential equation 

 
0

( , )


= −

v
z v z

G v N
,  (1) 

in which v denotes the relative tangential velocity, σ0 represents the bristle stiffness coefficient, N denotes the normal load 

magnitude, and G is a function that describes the friction force as velocity-dependent, represents the Stribeck effect, and 

incorporates static and kinetic friction force levels. In the original LuGre model, the friction force can be evaluated as 

 0 1 2  = + +F z z v ,  (2) 

where σ1 is the bristle damping coefficient which represents the micro-damping, σ2 denotes the viscous friction coefficient that 

corresponds to the macro-damping. This original version of the LuGre friction force model has been developed for constant 

normal force situations. Therefore, it cannot appropriately deal with cases in which the normal load varies, since load changes 

do not directly affect the result of Eq. (2). 

Later, Canudas-de-Wit and Tsiotras [4] extended the original LuGre friction force model to overcome some of its limitations. In 

this amended version, the differential equation that governs the state variable is given as 

 

A

0

A ( )


= −

v
z v z

G v
,  (3) 

where σ0
A is a constant coefficient that represents the stiffness of bristle deflection per unit of normal load. In this amended 

model, the Stribeck function GA is defined as a function of the static and kinetic friction coefficients, instead of the static and 

kinetic friction forces as in the original model. In the amended LuGre model, the friction force is calculated directly as a function 

of normal load, i.e.  

 ( )A A A

0 1 2  = + +F z z v N   (4) 

where σ1
A and σ2

A are constant parameters that represent the bristle damping coefficient and viscous friction coefficient, 

respectively, per unit of normal load. 

Both the original and the amended model exhibit limitations when the normal force varies during the contact interaction, as 

demonstrated in Section 3. The proposed modification to the LuGre friction model is intended to mitigate these limitations and 
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is similar to the amended model; however, the coefficients are defined differently, i.e. 

 
P A

0 0 = N , 
P A

1 1 = N , 
P A

2 2 = N ,  (5) 

and the friction force is given as 

 
P P P

0 1 2  = + +F z z v .  (6) 

The most relevant feature of this modification is that it enforces a constant stiffness coefficient when the contact is in the sticking 

regime. In this way, it avoids the drift due to a variable stiffness, when the normal load varies. 

3 Results and Discussion 

In order to demonstrate the effectiveness of the proposed modification of the LuGre friction model, a simple block of mass 

moving on a horizontal surface is considered as an application with two examples. In these examples, the normal and pulling 

forces are prescribed to highlight the issues associated with each model. 

Figure 1 shows the results of two examples considered. In the first case, a constant normal load is applied until 2 seconds of 

simulation and then it continuously decreases until the end of the simulation. As demonstrated in Figure 1a, the original LuGre 

model produces a ratio between the friction and normal forces that exceeds, in a significant manner, the static and kinetic friction 

coefficients. In the second case, a constant pulling force is applied well below the break-away force, and the normal force is 

subjected to continuous oscillations of about 10% of its average magnitude. The results of Figure 1b show that the amended 

model presents an unrealistic drift between the contacting surfaces, whereas the newly proposed model is free of this flaw. 

   
 (a) (b) 

Figure 1: Results of (a) friction to normal force ratios in a case of normal force decreasing, and  

(b) displacement of the mass block in a case of normal load oscillation in the sticking regime 
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EXTENDED ABSTRACT  

1. Introduction  

In the design of mechanisms and dynamic machines, fatigue life should be considered as a fundamental factor to ensure the 

reliability of their components. However, the fatigue life prediction models currently used in mechanical design do not take into 

account the effect of relevant factors, as wear and the evolution of clearances it produces, which undoubtedly influences dynamic 

loads. These changes can vary the load ranges in some components of the machine during its life and, consequently, modify the 

stress levels on them. In the field of multibody system dynamics, there are studies focused on the modeling of clearances and 

wear in the rotating joints of mechanisms [1,2]. However, few studies relate the dynamic effects of these phenomena to the loads 

that must be born by the components of the mechanism. A paper has recently been published in which a methodology to evaluate 

the effect of the evolution of wear clearances on the fatigue life of components is proposed [3]. That work shows, in a single case 

study, the relevance that this effect may have on the fatigue life of a specific component of the machine.  

In this work, the methodology developed in [3] was applied to two industrial use cases. Multibody dynamics (MBD) simulation 

was employed to consider the effect of the evolution of wear clearances present in rotating joints in the dynamic behavior of the 

machines over the time. In this way, a much more accurate description of the fatigue behavior of the machine components and 

estimation of the service life of the mechanism can be obtained than applying the classical machine design methods. In particular, 

the behaviors of a railway pantograph and an industrial press have been studied, and relevant design recommendations have been 

drawn from the study.  

2. Metodology  

The analysis of the industrial mechanisms studied in the present work was carried out by means of a MBD simulation procedure 

that allows to simulate the evolution of the clearances during the life of a machine. For this purpose, a wear model was 

implemented whose parameters were experimentally validated through an in-house developed test bench. The forward-dynamics 

simulation of the mechanism provides the reaction loads that are then used to evaluate the stresses in the components through 

finite element (FEM) models. In this way, the critical points can be identified and the stress histories at them can be calculated. 

This process enables to evaluate the evolution of fatigue damage with greater accuracy than classical machine design methods 

as it considers the variation along the time of dynamic loads due to clearances. Two representative case studies are presented 

below, for which the effects of considering the growth of clearances in the fatigue life of the mechanisms are opposite.  

2.1. Case study: industrial press  

This case study considers the effect of a clearance in the rotating joint of an industrial press indicated in Figure 1a. The clearance 

does not grow uniformly, yet it grows more in the sector subject to the greatest efforts. As the size of the clearance increases 

along the time, the dynamic forces also increase, as illustrated in Figure 1b, which translates into a significant increase in stresses 

and, consequently, into a reduction of the fatigue life. Figure 2a shows the evolution of the clearance size along the work cycles 

of the machine, while Figure 2b plots the cumulative damage, which follows an exponential behavior. In fact, the model which 

takes into account the clearance effect predicts a premature break of the component.   

 
Figure 1: (a) Mechanism critical joint; (b) Dynamic load evolution due to the increase in the size of the clearance.  
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Figure 2: (a) Clearance Evolution. (b) Cumulative damage for the classical and the proposed approach  

  

2.2. Case study: railway pantograph  

This case study focuses on the mechanism of a railway pantograph. The mechanism is responsible for keeping the adequate 

contact force with the catenary cables that feed the towing vehicle. After applying the proposed fatigue life evaluation 

methodology, it turned out that the increase of clearances improved the fatigue resistance of the components, which would allow 

the use of tighter safety factors in the design. The results of this study are shown in Figure 3.  

  

  

Figure 3: (a) Mechanism and components; (b) Cumulative damage in each component using the classical (green) and the 

proposed (blue) approaches.  

3. Conclusion  

The evolution of clearances due to wear has an important influence on the fatigue life of industrial machines and mechanisms. 

In addition, it is observed that this phenomenon may affect differently depending on the characteristics of the machine motion. 

The presence of clearances in cases with high dynamic forces involved causes these forces to increase, thus increasing the 

stresses, which in turn accelerate the accumulated damage, reducing the fatigue life. However, in certain mechanisms not subject 

to high dynamic loads, the clearances may slow down the accumulated damage due to the geometrical changes in the mechanism 

they cause, so that a less conservative safety factor could be applied in the design of the mechanism.  

In order to improve machine design methods, we are currently working on a series of tools, based on MBD simulation, that seek 

to provide a better life prediction from the design stage. Furthermore, taking into account the force variations due to increased 

clearances allows the design of machines which can possess greater precision and greater structural and functional reliability. It 

is intended to develop design methodologies for joints that rely on predictions based on MBD simulation.  
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EXTENDED ABSTRACT

Summary. The aim of this work is to introduce the tippedisk to the theoretical mechanics community as a new mechanical-
mathematical archetype for friction-induced instability phenomena. The modeling, analysis and simulation of the tippedisk is
discussed. Unlike the tippetop, the tippedisk has no rotational symmetry, which greatly complicates its analysis. Since the system
can not be reduced to a planar one, one has to consider the full three-dimensional kinematics, being intrinsically nonlinear. The
in-depth analysis leads to homoclinic connections and global bifurcations.

1 Introduction

Various gyroscopic systems which are interacting with a horizontal frictional support, such as Euler’s disk [1], the rattleback [2]
and the tippetop [3], form a scientific playground for research in theoretical mechanics. The tippetop [4, 5], as well as the
related dynamics of spinning eggs [6], correspond to a subclass of gyroscopic systems which shows friction-induced instability
phenomena. The tippetop is a rotationally symmetric top, consisting of a spherical body and a stem attached to it. The center
of gravity (COG) does not coincide with the geometric center, such that the stem points upwards as the top rotates with non-
inverted orientation. If the top is spun around its axis of symmetry, normal and friction forces are acting on the top, such that
the top starts to invert its orientation and balances on its stem. Similar phenomena also occur for other axisymmetric bodies with
rotational symmetry in inertia and geometry, for example spinning eggs [6]. But what happens if this symmetry does not exist?
In this work we introduce the "tippedisk" as new archetype of a three-dimensional rigid body system with frictional contact. The
tippedisk can be seen as a thin disk for which the COG does not coincide with the geometric center. If the tippedisk is spun
around an in-plane axis, it can be observed that the COG rises until the disk remains in an inverted configuration. The inversion
phenomenon is therefore not restricted to axisymmetric rigid bodies and also takes place for the tippedisk. We aim to conduct an
in-depth stability analysis for the tippedisk. Moreover, the analytical study will be validated through various numerical models
and the results will be compared to experimental data in future research.

2 Mechanical model

The mechanical system consists of a thin, rigid disk with mass m, radius r, eccentricity e and a frictional support. The simplest
way to design such a disk, where the COG and the geometric center G do not coincide, is to take a homogeneous disk and to drill
a hole (remove mass) at an arbitrary point, which does not coincide with the geometric center G of the disk.

In Figure 1 the mechanical model for the tippedisk
is depicted. The right-handed body fixed B-system
is attached to the disk, such that eB

z lies perpen-
dicular to the surface of the disk. The eB

x -vector
is defined as the normalized vector of rGS, which
points from the geometric center G to the center
of gravity S. The inertia tensor with respect to
G expressed in the body fixed K-system is given
as BΘG = diag(A,B,C), where B < A < C holds.
Since the disk is in contact with the support, we
have to introduce a contact point C1 which is de-
fined as the body fixed point with minimal height.
Therefore, we introduce another coordinate sys-
tem G in which rGC1 = −reG

y holds. The gap be-
tween C1 and the flat support is measured as gN1.
We assume Signorini’s law in normal direction
and smooth Coulomb friction with friction coef-
ficient µ and smoothing parameter ε , see [7] .

Figure 1: Mechanical model: tippedisk

For the following stability analysis it is convenient to parameterize the rotation matrix using Euler angles, such that the equations
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of motion become ordinary differential equations. The angle α describes the rotation around the eI
z-axis, β is the inclination angle

around the eG
x -axis and γ the rotation angle around the eG

z -axis, corresponding to the Euler angles in common z-x-z convention.

3 Inversion Phenomenon

In a first step the local asymptotic stability of the stationary solutions is analyzed using an eigenvalue analysis. Hereto, the system
is linearized around the non-inverted stationary solution (β = +π/2,γ = −π/2) and the inverted one (β = +π/2,γ = +π/2).
As a result, it follows that the inverted stationary solution is locally asymptotically stable above a critical spinning velocity Ωcrit,
whereas the non-inverted one is always unstable. The application of perturbation techniques allows to determine a closed form
expression of the critical spinning velocity Ωcrit.

0 1 2 3 4 5

−π
2

0

+π
2

t [s]
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Figure 2: Evolution of the angles β (blue) and γ (red) during the
process of inversion.

The evolution of the angles β (blue) and γ (red)
are shown in Figure 2, obtained from time integra-
tion of a reduced system where the unilateral con-
straint is assumed to be bilateral. At time t = 0s,
it holds [

β0
γ0

]
=

[
+π/2

−π/2−0.1

]
.

This initial configuration corresponds to a non-
inverted disk perturbed in γ-direction. If the disk
is spun around its in-plane axis of symmetry (i.e.,
in eB

x -direction) with supercritical angular spin-
ning velocity Ωx,0 = 40 rad

s >Ωcrit, we observe that
the angle γ changes sign and a damped oscillation
near +π/2 occurs. During the process of inver-
sion, the angle β changes only slightly and con-
verges asymptotically to π/2. Since β does not
change significantly during the inversion, the in-
version phenomenon is mainly characterized by
the change of γ .

4 Conclusions

In this work the tippedisk has been introduced as a new toy to the playground of mechanical mathematical archetypes for gy-
roscopic systems under unilateral constraints and friction. The introduced mechanical model contains all relevant effects, such
that it is able to describe the inversion phenomenon. Moreover, it can be used to validate numerically the results of the analytical
analysis. The longterm goal of this project is a rigorous stability analysis and the qualitative approximation of the inversion
process. In summary, it should be noted that the tippedisk can not be understood as a trivial generalization of the tippetop,
since the dynamics are much more complex. In addition, the tippedisk serves as a link between analytical mechanics, theoretical
mechanics and nonlinear dynamics.
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EXTENDED ABSTRACT

1 Introduction

Nonsmooth techniques are particularly well-suited for the study of the dynamics of flexible multibody systems subject to contacts
and impacts as shown in [1]. In that work, the nonsmooth generalized-α (NSGA) time integration scheme is presented. It is an
event-capturing technique based on the splitting of the involved fields into a smooth and a (nonsmooth) impulsive contribution,
where the former is integrated with second-order accuracy by means of the generalized-α scheme and the latter with first-order
accuracy. The resulting scheme offers an effective control of the numerical dissipation and it does not present any drift of the
bilateral and unilateral constraints at the position and velocity levels.

On the one hand, the robustness of the NSGA time integrator for problems involving nonlinear bilateral constraints and flexible
elements was improved in [2]. The main difference with its predecessor is that the definition of the splitting is modified in order
to ensure the decoupling of the smooth, the position correction and the velocity jump sub-problems. However, in that work no
constraints at acceleration level were considered. On the other hand, the incorporation of contact constraints at acceleration level
in the NSGA was studied in [3]. This paper showed that imposing acceleration constraints leads to the elimination of spurious
oscillations of the constraints and Lagrange multipliers and to an improvement in terms of Newton iterations for problems
characterized by contacts that remain closed in a persisting manner. However, the decoupling of the three sub-problems was not
exploited and the study was limited to point-to-face unilateral contact conditions.

In this work, we investigate the incorporation of unilateral constraints at acceleration level in the context of the decoupled NSGA
time integrator. The resulting scheme thus benefits both from the robustness of the decoupled version of the NSGA method
and from the improved numerical properties brought by the acceleration constraints. Furthermore, the method is applied to a
test-case involving contacts with curved surfaces and a performance and robustness analysis reveals the importance of imposing
constraints at acceleration level when dealing with contacts between curved geometries.

2 Method

As it was already mentioned, the NSGA results from the splitting of the involved fields into a smooth and a nonsmooth impulsive
contribution. There is some freedom for the definition of the problem governing the smooth prediction of the motion and, in the
basic version of the algorithm, no contact information is exploited for this sub-problem. In contrast, in this work, the formulation
of the smooth sub-problem takes into account contact information by imposing the bilateral and the unilateral constraints at
acceleration level in the following manner:

−g̈U (q̃, ṽ, t) = 000 (1a)
if g j(q̃, t)≤ 0 and ◦g j(q̃, ṽ, t)≤ 0 then 0 ≤ g̈ j ⊥ λ̃ j ≥ 0, ∀ j ∈ U (1b)

where g j, ◦g j and g̈ j are the constraint j at position, velocity and acceleration levels, U represents the set of unilateral constraints
and U the set of bilateral constraints, q̃ and ṽ respectively denote the smooth contribution to the generalized coordinates and the
velocity field, and λ̃ j denotes the smooth Lagrange multiplier. Equation (1) represents a frictionless contact problem, neverthe-
less, the method is also applicable to frictional contact problems. It should be observed that the definition of this problem depends
only on the smooth contribution of the involved fields, and not on the total fields. Consequently, the smooth sub-problem can be
solved independently of the other sub-problems, which represents a fundamental advantage. In the end, the resulting scheme will
be characterized by the resolution of a sequence of three decoupled sub-problems.

3 Results

In this example, we compare the results obtained between the decoupled solver with and without constraints at acceleration level.
The problem consists of one sphere of radius ra = 1 and mass ma = 10 orbiting around another fixed sphere of the same radius
rb = 1 and mass mb = 10. The two spheres are joined by means of a spring whose stiffness constant is 1000 and natural length is
0.5(ra + rb). The initial position of the fixed sphere is the origin and the moving sphere’s center is at coordinates (0,ra + rb,0).
The initial velocity for the moving sphere is given by Ωz =−πra and vy =−π . We solve for frictional contact by taking zero for
every restitution coefficient and adopting a friction coefficient of µ = 1.8. A total simulation time of 10 s is run with a time step
of 10−2 s.
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The solutions obtained for this problem can be observed in Figure 1. A direct comparison of the results clearly states the need
to impose constraints at acceleration level for problems of this kind. As it can be appreciated, no artificial increase of the kinetic
energy is present when imposing constraints at acceleration level. This test clearly demonstrates that, unless the time step is
decreased considerably, it is essential to impose acceleration constraints in the NSGA method in order to solve problems with
persistent contact on curved surfaces.
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(b) Displacement (with acceleration constraints)
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(e) Acceleration (without acceleration constraints)
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Figure 1: Comparison of the results obtained with and without imposing constraints at acceleration level. The results on the left
are obtained without imposing acceleration constraints, whilst the ones on the right are obtained by imposing them.

4 Conclusion

This work proposes a variant of the NSGA in which constraints at acceleration level are taken into account in the smooth
prediction sub-problem. This is done in such a way that the resulting integrator is characterized by a decoupled sequence of
sub-problems. Through an example involving two spherical bodies, it is demonstrated that acceleration constraints help to solve
contacts between curved surfaces, effectively eliminating the artificial increase of the kinetic energy that would appear otherwise.
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EXTENDED ABSTRACT

1 Introduction

In biomechanics, modeling strands like muscles or ligaments is required in many applications, notably in musculoskeletal sys-
tems. Here, it is standard practice to model muscles as thin massless lines and defining their path using via points or – more
advanced – by defining surfaces as wrapping obstacles[1]. However, there are cases where the strand diameter is not negligi-
ble. Discrete methods, modeling the strand for example as a bead chain[2] provide a general and powerful workaround having
the advantage of a fast derivation. The disadvantage is, however, that their implementation is mostly complex involving mul-
tiple contact detection and bookkeeping about it, which in turn can be associated with very high computation times. Also, in
musculoskeletal simulation models, discrete approaches may lead to unrealistic forces when coupled to dynamic musclemodels.

To overcome this shortness, in our previous work[3, 4], a novel approach was presented using continuous integration of smooth
differential equations to frictionlessly wrap a thick strand with non constant conicity but constant length on a convexsurface
with non constant curvature. Compared to an implementationof the bead method for different levels of discretization fineness,
the method was verified and high computational saving in the order of factors of 200–800 could be substantiated. The present
contribution is an extension to cover elongation with compressible cross sections instead of the constant length condition. To
simplify the problem and illustrate the idea of stretching compactly, one end of the muscle (endO) is purposely held fixed.

2 Problem formulation

O

I
A

B

σA
σB

sOA

sAB
sBI

eCA
e⊥

CA
eCB

e⊥
CB

sI QA
QB b

Figure 1: Thick strand with with free endO fixed and slidable free endI wraps on a surface betweenA andB

As illustrated in Fig. 1, a curved strand with the half thicknessb(s,ε) defined with respect to the positions on the center line,
and depending on the longitudinal strainε, is wrapped over a surface with its free endO fixed and its free endI slidable (joint
variablesI). For the total center line length betweenO andI, it holdssOI = ℓ = ℓ0(1+ ε) with the unstretched lengthℓ0 and the
longitudinal strainε. For the cross contraction, the assumption∆V/V = (1−2ν)∆ℓ/ℓ was used, with volumeV and Poisson’s
ratio ν . Between the contact pointsQA andQB the strand wraps around the surface withσA andσB being the surface variables,
whereasA andB are the corresponding points on the center line of the strandmarking the transition from the outer straight line
segmentssOA andsBI to the wrapped segmentsAB of the center line in the middle. At the cross sections atA andB a frame is
introduced with the unit vectoreC being normal to the cross section ande⊥

C being orthogonal toeC.

At both connection pointsA andB, the orthogonality condition applies that the end faces atA andB must be perpendicular to the
free ends. In addition, the length conditions apply that thedistance betweenO andA must correspond to the center line lengthsOA

and the distance betweenB andI must correspond to the total lengthℓ minus the lengthsOB from O to B, namelysBI = ℓ− sOB.

This leads to the position constraints at endsA andB:

g
A

=

[
g1A

g2A

]
=

[
sOA− ∆rOA(σA,sOA,ε) · eC(σA,sOA,ε)

∆rOA(σA,sOA,ε) · e⊥
C (σA,sOA,ε)

]
= 0 ; zA =

[
sOA

σA

]
(1)

g
B

=

[
g1B

g2B

]
=

[
∆rBI(σB,sOB,ε) · eC(σB,sOB,ε)+ sOB − ℓ(ε)
∆rBI(σB,sOB,ε) · e⊥

C (σB,sOB,ε)

]
= 0 ; zB =

[
sI

σB

]
(2)
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and the corresponding velocity constraints

ġ
A

= JA żA +
∂g

A

∂ε
ε̇ !

= 0 and ˙g
B

= JB żB +
∂g

B

∂ε
ε̇ !

= 0 . (3)

where∆rOA and∆rBI are the vectors fromO to A and fromB to I, respectively,sOB = sOA +sAB and JA = ∂g
A
/∂ zA, JB = ∂g

B
/∂ zB.

3 Algorithm

The presented algorithm consists of two nested integrations. In the external integration, the constraint matching takes place,
where the implicit velocity constraints atA andB are solved for derivatives of the state vectors with respectto timet as

dxconstr

dt
=

[
żA
żB

]
=




−J−1
A

∂g
A

∂ε

−J−1
B

∂g
B

∂ε


 ε̇ . (4)

In ∂g
B
/∂ε , the derivative∂ sOB/∂ε = κε

AB arises which describes howsOB changes whenε changes (longitudinal stretch, transver-
sal shrink). This leads to a perturbation problem which can be solved for the interval[σA,σB] via the coupled ODEs (derivations
are left out due to lack of space):

dxshoot

dσ
=

d
dσ

[
s

κε
AB

]
=




f (s,σ ,ε)

∂ f
∂ s

∣∣∣∣
ε=const

· ∂ s
∂ε

+
∂ f
∂ε

∣∣∣∣
s=const


 . (5)

A detailed derivation of the differential equation ds/dσ = f (s,σ) to compute the length of the wrapped center line was presented
in [3] for a cone-shaped strand with constant aperture angleα and in [4] for a convex curved strand, and it can be done analogously
for the strand additionally dependent on the longitudinal strain ε.

4 Results

The presented method was implemented in Matlab using the Runge-Kutta routine ode45 for integration of the velocity constraints
in the range[ε0,εE ] and compared with iterations at position level using equidistant Newton steps (Table 1). The computations
were performed on a processor Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz. One can recognize that the integration method
is more than twice as fast, with still excellent accuracy at the end of the integration.

Table 1: Computational results

Model and numeric parameters
ε0 εE ∆ε tolNewton tolODErel tolODEabs
0.2 0.8 0.006 10−8 10−8 10−8

Method Computation time [s] Accuracy
Integration 0.4726 3.0e-09
Iteration 1.1097 -7.6e-11

5 Conclusion and Outlook

This contribution presents a continuous and fast method which allows for wrapping a thick strand with non constant aperture
angle over a frictionless convex surface with non constant curvature now taking into account longitudinal elongation and lateral
strain of the strand. Future work will include free endO freely movable, too, wrapping over multiple surfaces and the spatial
contact surface case.
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EXTENDED ABSTRACT 

1 Introduction 

When it comes to train monitoring systems, and especially safety monitoring systems, the dynamics and stability of a bogie is 

an essential aspect. In order to gain more insight into the dynamics, a multibody model is constructed. The goal of creating a 

model of such a train bogie is to obtain a means to assess the stability of the train in a better and more cost-efficient manner. In 

order to do this the multibody model is scheduled to be integrated in a virtual sensing framework based on an extended Kalman 

Filter [1]. This allows a sensor set containing for instance only accelerometers and strain sensors to be used to virtually measure 

quantities that are otherwise hard to measure (e.g. strain in locations where it is difficult to place a strain sensor), or even 

impossible to measure (e.g. rail-wheel contact forces). 

2 Model Construction 

The multibody model of the train bogie is constructed with an in-house MultiBody Research Code (MBRC) [2]. This is a highly 

modular code written in Matlab which allows it to easily construct different multibody models with varying topology, but also 

to easily add component force models such as the contact model between the rail and the wheel. This contact model is a highly 

dedicated model that has been widely discussed in literature already [3]. But in order to use the multibody model in a state 

estimation feedback loop. The underlying equations need to be accessible [1]. In order to achieve his, a rolling contact model is 

implemented in the MBRC. 

The contact model comprises of two stages: the geometric problem in which the contact points are sought, and the dynamic 

problem in which the force expressions are evaluated. These two stages are not completely decoupled as the choices in the latter 

may influence the requirements for the former. The contact model implemented in the MBRC assumes that the normal force 

expression is independent from the tangential force expression. Moreover the normal force expression is evaluated assuming 

Hertzian contact. The two most notable assumptions here are that the local deformations are much smaller than the overall 

component dimensions and that the contacting surfaces can be adequately locally approximated by quadratic surfaces which are 

not conformal. This allows the contacting surfaces to be assumed rigid such that the local flexibility should only be accounted 

for in the force expression but not in the contact search algorithm. It also allows the contact search algorithm to assume that only 

elliptical contact patches exist with in the middle a point where the surface are maximally penetrating. 

In order to achieve smooth contacting surfaces, both the rail and the wheel surfaces are represented by Non-Uniform Rational 

B-Splines (NURBS) [4]. If the rail and wheel should be modeled as flexible, the NURBS parameters should be mapped onto the 

deformation patterns [5], but in a first modeling iteration this can be assumed to be unnecessary as the model is to be used in a 

state estimation feedback loop. 

The contact search algorithm is split in two steps: the first step is the global search algorithm and the second stage is the local 

search algorithm. In the global search algorithm both surfaces are sampled and a Bounding Volume Hierarchy (BVH) is 

constructed [6]. It is very difficult to find contact between two general surfaces, but when both surfaces are convex the Separating 

Axis Theorem (SAT) can be used [6]. This theorem states that if two surfaces are convex and non-contacting, they can be 

projected onto an axis where they do not overlap. The BVH is then a binary (or higher) tree of nested convex primitives 

encompassing the full original geometry. If the global search algorithm using the BVH yields overlapping primitives, the 

corresponding sampled points of the underlying NURBS surfaces can be used as initial guess for the local search algorithm. 

The local search algorithm uses a gradient-based solver (e.g. Newton-Raphson) to solve the contact conditions. These contact 

conditions define the point of maximal penetration for two contacting non-conformal surfaces as they are considered here: (1) 

the normals on both surfaces need to be colinear; (2) the penetration vector need to be colinear with these normal. As these 

conditions only impose constraints projected onto the tangent planes of the surfaces, no direct check on the penetration depth is 

performed. Therefore a sanity check is added imposing an upper and lower limit on the penetration depth to avoid infeasible 

contact locations to be found by the algorithm. 

With the contact location(s) found, the force expressions can be evaluated. The normal force is computed via a standard Hertzian 

contact force expression. The tangential force expression can be evaluated with three different models: (1) a linear Kalker model; 

(2) a Polach model [7]; (3) a nonlinear Kalker model (based on FASTSIM2 [8]). These three models are given here in increasing 

order of modeling fidelity, but also in increasing order of computational complexity. In a multibody model a balance should be 
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found for the tangential force model that delivers enough complexity in the dynamics that can still be seen in the remainder of 

the mechanism without including effects that are barely visible other than in the contact patch itself. By having these three models 

available, this trade-off can be made on a case-per-case basis. 

3 Multibody Considerations 

In order to obtain fast convergence of the equations of motion, a tangent damping and stiffness matrix should be provided by the 

force expressions. For the two force expressions this can be done by applying the chain rule many times over until the required 

sensitivity information is obtained. For the contact location however this is more complicated. The contact location is implicitly 

defined by the contact conditions (i.e. the surface normals and penetration vector should be colinear). These implicit equations 

are a function of the generalized coordinates of each body that the surfaces are connected to, but also the two surface parameters 

of each surface where the contact is positioned. The sensitivity of the surface parameters at the contact location w.r.t. the 

generalized coordinates should thus be computed via implicit differentiation of the contact conditions. 

The obtained tangent damping and stiffness matrices are validated using numerical derivatives for the case where the bodies are 

modeled in a Cartesian Coordinates formulation and in a Natural Coordinates formulation. 

4 Results 

In order to demonstrate the correct functionality of the bogie model a simulation is performed whereby the bogie is accelerating 

on a straight track, but as the track turns to the left the bogie keeps accelerating. The turn does not include banking of the track. 

In figure 1, the normal force on the left front wheel can be seen to be decreasing until a point where it losses contact and the 

bogie derails. The oscillations in the turn can be attributed to the dynamics of the inertia of the different components interacting 

through the suspension elements. 

 

Figure 1: Contact forces in left front wheel 

5 Future Work 

The multibody model currently only contains rigid components to represent a.o. the bogie frame and lumped stiffness models to 

represent the primary and secondary suspension components. In a future update the bogie frame is to be replaced by an FE model. 

Another step to be taken is to include the model in a state estimation feedback loop in order to perform virtual sensing. 
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EXTENDED ABSTRACT

1 Introduction

Impact simulations are encountered in many engineering problems, for example in crashworthiness simulations [1]. Of particular
interest is often the stress and strain distribution in the bodies to assess e.g. damage occurring due to the impacts. However,
these problems have classically posed significant computational challenges due to the small timesteps required to resolve the
impact conditions, and relatively expensive analysis of deformable components. In many cases full nonlinear finite-element
simulations are performed. This leads to very high loads as both all nonlinear elements need to be evaluated together with the
contact conditions. However, commonly the elastic deformation remains in the linear elastic range and the element nonlinearity is
only required in order to enable large average component motion. In order to reduce this computational load, flexible multibody
simulation can be employed. This allows to effectively reduce the computational load, as the average component motion can now
be resolved on a component level with relative (small) flexible deformations described by a limited set of deformation modes.
However, this reduced computational load on a component level, leads to a relative importance in the cost related to the contact
conditions.

In order to obtain an effective framework for impact simulation, we propose a combination of the flexible natural coordinate
formulation (FNCF) [3] with the classical pinball algorithm [2] for the contact description. The benefits of this approach are
twofold. The FNCF approach allows a linear description of the absolute nodal coordinates as a function of the generalized
multibody coordinates, which can be leveraged in the contact detection. The pinball algorithm is also very fast to evaluate if
the center nodes are known and can be easily vectorized. This framework leads to an efficient approach which is validated
numerically on an impact-drill example.

2 Flexible natural coordinate formulation with pinball contact

The flexible natural coordinate formulation employed in this work, features are redundant kinematic description where a set
of local Vl ∈ Rn×m and global Vl ∈ Rn×9mmodes are present [3]. This allows to express the deformations with respect to the
body-attached reference frame as:

u = Vlql , (1)

with ql ∈ Rm the deformation participation factors. It also allows to express the absolute nodal coordinates as:

x = Vtqt +Vrqr +Vgqg (2)

with qg ∈ Rm the global participation factors, Vt the translational modes with their amplitudes qt , and Vr the rotational modes
corresponding to the contributions in the rotation matrix qr. To ensure consistency in the rotation and between the deformations
in the local and global frame, a set of (quadratic) constraint equations is added in the description c(c) = 0. This leads to a set of
equations of motion of the form:

Mq̈+Kq− ∂cT

∂q
λ = fcontact(q) (3)

c(q) = 0 (4)

The contact forces are expressed through the pinball algorithm [2]. In this approach, a sphere is hosted by a potential contact
node and the contact forces are obtained through a penalty formulation. As the absolute nodal coordinates are readily obtained
through the linear equation Eq. (2), this can be evaluated very efficiently.

3 Numerical validation

The numerical validation we consider is the chuck of an impact-drill. For the common operation, this component is repeatedly
impacted by a ram. The model considered is shown in Fig. 1. The chuck is represented by a solid mesh with 43000 elements
and 83000 nodes. For the ram, a single spherical body is employed. On the chuck body, 450 nodes host a pinball for the contact
simulation, whereas only a single pinball is present for the ram. The flexible multibody model is constructed with a modal basis
consisting of fifty free-free modes for the chuck body.
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Figure 1: Chuck mesh with impacting ball

Figure 2: Response of chuck and ram, reference frame motion, during impact simulation (units omitted for confidentiality).

The simulation is performed and the resulting response of the overall translation for the chuck and the ram are shown in Fig. ??.
Moreover, the stress distribution and history are retrieved and correspond closely to those obtained from Abaqus simulations. The
presented impact simulation using the proposed framework in Matlab takes around two minutes on a regular laptop, compared to
several hours for the equivalent Abaqus simulation.
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EXTENDED ABSTRACT

1 Introduction

At a basketball match, it sometimes occur that the ball rolling around the rim for a very long time before falling inside or outside
the rim. We want to understand this phenomenon by analysing the nonlinear dynamics of the ball on the rim. In the reduced
phase space of the system, we can find a two-parametric family of equilibrium points (steady motions) which was first found by
Liu et al [1] and the properties and role of these solutions were explored in details by the authors [2]. In the present analysis,
we focus on the symmetries and the conserved quantities of the system to explore the behaviour of the ball around the steady
motions, and determine the realizable long-term rolling solutions observed in practice.

2 Mechanical model

Let us model the ball and the rim by rigid bodies: The radius of the ball is r, its mass is m, and its mass moment of inertia jmr2

where j ≈ 2/3 is the dimensionless mass moment of inertia. The rim is modelled by a fixed rigid torus with a major radius R and
the minor radius a, and we use a short-hand notation ρ = r+a (see Fig. 1).

By assuming pure rolling of the ball on the rim, the velocity state of the ball can be described by the components ω1, ω2 and ω3
of the angular velocity vector, which are represented in a rotating coordinate system at the contact point C (see Fig. 2). The only
external force on the ball comes from the gravity g, and we neglect all dissipation effects.

G

C

O R

α
βG

C
O

gra

ρ

Figure 1: Sketch of the mechanical model. Left panel: side view of the ball on the rim. Right panel: top view of the ball on the
rim. The position of the ball is determined by the angles α and β . The geometric centre of the bodies are denoted G and O, and
the contact point is denoted by C.

3 Equations of motion

By calculating the Newton-Euler equations of the ball, we get that the dynamics of the rolling basketball can be described in the
reduced state space x = (β ,ω1,ω2,ω3), and the evolution of these variables are given by the system

β̇ =
r
ρ

ω1, (1)

ω̇1 =
(1+ j)rω2

3 sinβ − jrω2ω3 cosβ
(1+ j)(R−ρ cosβ )

− gcosβ
r(1+ j)

, (2)

ω̇2 =
rRω1ω3

ρ(R−ρ cosβ )
, (3)

ω̇3 =− rω1ω3 sinβ
R−ρ cosβ

− jrω1ω2

ρ(1+ j)
(4)
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ω1

ω2

ω3

Figure 2: Description of the velocity state of the ball by angular velocity components. Left panel: ω1 denotes the transversal
angular velocity, which is coupled to the motion of the centre of the ball around the minor circle of the rim. Middle panel: ω2
denoted the orthogonal angular velocity where the centre of the ball rests in place. Right panel:

of four nonlinear differential equations. This state space does not contain the angle α and the orientation of the ball, which
so-called cyclic quantities do not affect the dynamics of the other variables. Note, that the system (1)–(4) does not depend the
mass m of the ball either.

4 Steady motions

It can be checked that the system (1)–(4) possesses non-trivial equilibria in the form x ≡ x0 = (β0,0,ω20,ω30), where the com-
ponents satisfy

(1+ j)r2ω2
3 sinβ − jr2ω2ω3 cosβ−gcosβ (R−ρ cosβ ) = 0. (5)

Thus, (5) determines a two-parametric family of equilibria, which form a two-surface in the four-dimensional state space. Each
equilibrium point on this surface represents a steady motion, where the ball is rolling around the rim at a constant angle β while
the angular velocity components in Fig. 2 remain unchanged. Linear stability analysis shows multiple non-hyperbolicity of these
equilibria, and thus, a nonlinear global analysis of the system (1)–(4) is needed to explore the behaviour of the ball around these
steady motions.

5 Symmetries and conserved quantities

The system is conservative, and thus, the total energy is conserved. In addition, the system (1)-(4) has a symmetry under the
reflection to the set ω2 =ω3 = 0, and it has also a time-reverse symmetry under the reflection to the hyperplane ω1 = 0. Moreover,
by changing the independent variable from time t to β , (1)-(4) can be reduced to a system

dω2

dβ
=

Rω3

R−ρ cosβ
,

dω3

dβ
=− ρω3 sinβ

R−ρ cosβ
− jω2

1+ j
. (6)

By careful analysis of these properties and using the results in [3], we can discover important properties about the system. It
can be shown that in addition to the total energy, there exist two further conserved quantities in the system. Moreover, it can
be shown that the stable steady motions are surrounded by a region filled by periodic solutions, which mean oscillations in the
angular velocity components and the angle β . This gives back the behaviour of the basketball which can be observed in several
videos of basketball shots.
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EXTENDED ABSTRACT

1 Introduction

There is a great interest towards the examination of dynamic contact and impact problems [1] due to their widespread applicabil-
ity. The proper solution of these kinds of problems can be especially momentous in such fields like cogwheel drives and cutting
metalwork. Contact and impact problems are hard to handle as a substantial nonlinearity occurs in the displacement field. The
main problem is that due to the spatial discretization a spurious high frequency oscillation emerges in the resulting functions,
which can easily cause divergence in the contact algorithm. Thus, in our study we focused on the best possible elimination of
these oscillations by which the choice of the proper numerical method has a great importance.

2 Results and Discussion

When assessing the developed method, a simple one-dimensional problem is reviewed (see Fig. 1) which contains an elastic rod
moving towards a rigid wall with a constant v0 velocity. In the literature, this 1D example is regarded as a standard test problem
in which the exact solution have not been accurately reproduced yet using numerical methods. It emerges in many recent publi-
cations such as in the paper by Kim [2] showing that it is still actual to deal with this problem.

L h

v0

x

Figure 1: The mechanical model of the examined 1D problem

After the spatial discretization using the finite element method [3], the equation of motion can be written in the form of

Mü+Cu̇+Ku+GTλ = f (1)

G(X+u)≥ 0 (2)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, G is the contact constraint matrix, X is the vector
of nodal coordinates, f is the load vector, u is the nodal displacement vector and λ denotes the contact pressure. In the solution of
the contact problem, the Lagrange multiplier technique was applied using the method published by Carpenter et al. [4]. The time
integration of equations (1) and (2) was performed applying our newly developed forward increment method. In order to obtain
the effectiveness of the proposed method, other solutions are also considered using well-known time integration methods like
the backward Euler method, the Newmark method [5] and the HHT-α method [6] (see Fig. 2). In opposition to these schemes,
the so called bulk viscosity method [7,8] provides a fundamentally different approach as a viscous damping (non-zero C) is
combined with the central difference method. This special approach has a great potential as it is much faster than the reviewed
time integration methods and can still assure the desired amount of damping. In our research we found this approach worthwhile
to deal with, aiming to improve its effectiveness. Further details will be provided in the presentation.

3 Concluding Remarks

Compared to other widely used methods, our novel approach yields a significantly better solution for the examined model.
The considered 1D contact problem is very simplistic, but the phenomena observed here have similar characteristics in higher
dimension cases. Thereby, the proposed method must be applicable for more complex problems.
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Figure 2: Time evolution of contact pressure
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EXTENDED ABSTRACT

1 Context

During the last decade, major transformations in terms of cadence are taking place in ports, therefore the cranes that continually
load and unload containers are also being impacted. These developments give rise to problems of a new nature: the behaviour of
cranes was considered until now quasi-static or cyclical, but it is becoming progressively dynamic. These associated effects are
causing significant damage to the cranes, the track and the foundations. This adversely affects the integrity of the rail guidance
system leading to reduced operating performance, system downtime and costly repairs.

The goal of this research is to understand the dynamic effects of the parameters of a crane on track through a research project
involving industrial partners. Dynamic effects present new challenges for crane manufacturers, track specialists and operators
regarding the increasing loads and operational speeds, the goal is to model the whole system (crane, track, foundation) with an
ad hoc multibody simulation, in order to capture the associated dynamic phenomena as precisely as possible, especially at the
track level.

2 Model and methods

A complete crane model has been designed using the ROBOTRAN [1] symbolic multibody software. The outcome of this
modelling work required gathering a series of data related to the crane’s gantry, the rolling elements and the track, in order to
feed a global multibody model with the following specific ingredients:

• A wheel/rail contact model definition taking high creepage and high forces into account. It is included in the form of
vertical kinematic constraints (perfect wheels on a perfect rail) and tangent frictional forces based on the Kalker non-linear
model [2]. To set the idea, the rail gauge, unlike to railway system, is 27,90 m. Moreover, the crane rail system must hold
up to 40 tons per wheel.

• A rail alignment irregularities model which inevitably impact the crane’s running quality. They are defined as sinusoids
with amplitudes and wavelengths adapted to the norm ISO 12488-1.

• The modelling of side rollers (with vertical axes, Figure 1) in intermittent contact with the rail. It is treated, in this first
model, as an unilateral spring/dumped system, whose lateral deflection mainly comes from that those of the rail (flexion
and torsion) [3].

• Identification of the stiffnesses of the gantry (deflections in the 3 directions and eigen modes). The aim is to calibrate the
multibody model on the finite element model (FEM) (continuous flexibilities) provided by the crane manufacturer.

• Motor control definition. Each wheel (see Figure 1) is controlled individually to correct the skewing phenomenon that
represents a less than optimal behaviour in which wheel/rail creepages are high and induced undesired wear.

To validate the model, experiments are being carried out in the port via a strategic location of accelerometers and force sensors that
are being installed on a test crane in Antwerp, Belgium (Europe). Various crane conditions are investigated: static configurations,
lateral and longitudinal trajectories, etc.

Figure 1: Real ASC model on the left and virtual 3D model on the right. Parts: trolley (1), container placement (2), side rollers
(3), wheels (4), bogie (5), vertical force sensor (6) and lateral force sensor (7).
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3 Results

Preliminary results from multibody simulations are already able to highlight the impact of several parameters on the crane
dynamics. For instance, regarding vertical forces, force sensors are currently being installed in the axles of the bogies (Figure 1,
the one on the right). The results on the left side of Figure 2 show that the trolley motion (Figure 1) has a significant effect on
these vertical forces for a realistic trajectory of the crane, with a dynamic amplification that largely increases with the default and
that is much higher than that currently recommended in the field.

In the port, to take track lateral irregularities into account, simulations with different roller-track plays (“gaps”) have been carried
out. Significant differences (Figure 2, right) in the roller/rail lateral forces are revealed at the level of the rollers for different play
values.

Other simulations show that the addition of irregularities in the rails affects the power dissipated at the level of the side rollers.
This fact could be one of the main factors that explain the origin of the wear detected, thus future studies will delve into the
analysis of these defects.

Figure 2: Resulting forces for a crane simulation in which the trolley (Figure 1), that manipulates a load of 40 t (container and
holding elements included), moves laterally with a realistic sinusoidal speed. Its value is maximum in the middle of its trajectory
and 0 at the ends. Left: the forces produced in the bogies axles are maximum when the trolley is on the same side and these peaks
highly increase with the velocity. Right: example of lateral forces on side rollers for different gap roller-track values.

4 Conclusion and perspectives

Crane dynamics impacts operation and should be taken into account in the crane operation and track engineering, especially
regarding the guidance issues. The current industrial problems which are generated by the rates highlight the need for a better
comprehension of their behaviour. At this point, the multibody simulations of the model have shown to be able to study different
realistic scenarios and to measure quantities forces, displacements or contact wear at its different levels (track, wheels, rollers,
bogies). This model is being validated on the database obtained from field measurements and it is envisaged to be shown during
the conference.

In terms of perspective, the multibody model of the crane will be coupled with the ballasted track conceived with the Discrete
Element Method, as we previously did in a scientific paper [4], to finally have a complete model of the crane.

Acknowledgments

The CRAMIC program (www.gantrex.com/en/r-and-d) is a collaboration between Gantrex, SENSY, UCLouvain and BBRI sup-
ported by Wallonia and Mecatech Cluster. Each of the partners plays a key role throughout the program according to their specific
areas of expertise, but nothing we have undertaken would have been possible without the help and active support of Konecranes
(crane OEM) and DP World (Terminal operator) as external partners.

References

[1] N. Docquier, A. Poncelet, P. Fisette. ROBOTRAN: a powerful symbolic generator of multibody models. Mechanical
Sciences, 4:199–219, 2013.

[2] J.J. Kalker, Three-Dimensional Elastic Bodies in Rolling contact, 1990, Dordrecht, The Netherlands: Kluwer Academic
Publishers.

[3] Chen, Z., Andrawes, B. A mechanistic model of lateral rail head deflection based on fastening system parameters. Pro-
ceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(9), 999–1014, 2016

[4] N. Docquier, O. Lantsoght, F. Dubois, O. Brüls. Modelling and simulation of coupled multibody systems and granular
media using the non-smooth contact dynamics approach. Multibody System Dynamics. 49, 181-202. 10.1007/s11044-
019-09721-0, 2020.

82



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

A Nonsmooth Dynamics Perspective on State Observer Design
for Mechanical Systems with Unilateral Constraints

Pascal V. Preiswerk, Remco I. Leine

Institute for Nonlinear Mechanics
University of Stuttgart

Pfaffenwaldring 9, 70569 Stuttgart, Germany
[preiswerk, leine]@inm.uni-stuttgart.de

EXTENDED ABSTRACT

State observer designs for mechanical systems with impulsive motion, caused by unilateral constraints, typically assume that
exact knowledge of the impact time instants is available through measurements. Only few attempts have been made to design a
state observer that does not require contact time information. Furthermore, these types of observers use the measurement of the
contact distance. We investigate the observer problem for linear mechanical systems with a single unilateral constraint, for which
neither the impact time instant nor the contact distance is explicitly measured. A discretization based on a numerical scheme
proposed by Paoli and Schatzman leads to a discrete linear complementarity system. From there, a dead-beat observer in the
form of a linear complementarity problem can be deduced. In addition, a passivity-based, Luenberger-type state observer can be
applied.

1 Introduction

In this work we investigate the state observer problem for mechanical systems with impulsive motion, i.e. systems with state
jumps caused by unilateral constraints. As an example system, consider the oscillator depicted in Figure 1, consisting of two
masses, connected by linear springs and viscous dampers. The oscillator is excited by an external force and the movement of the
second mass is restricted by a motion limiting stop. An important aspect for the state observer design for such systems is whether
or not the time instants where the state jumps occur are known or not. Most proposed observers assume that these jump or impact
time instants can directly be extracted from measurements, for example by measuring all relevant positions in a system where
the impact times are position dependent [1] or by directly measuring contact [2]. This allows for the design of a state observer
that exhibits state jumps that occur at the same time instants as the observed system. Under a maximal monotone impact law,
it is then possible to construct a Lyapunov function for the error dynamics (i.e. the time evolution of the difference between the
estimated state and the actual state) which does not increase over impacts.
Only few attempts have been made to design state observers in the case of unknown impact time instants, such that the corre-
sponding state jumps of the observed system and the state observer do not coincide. One of the main difficulties in such cases is
the peaking phenomenon: even if the observer state nearly matches the real state, a slight mismatch in the impact time instants
can lead to a large velocity error caused by velocity jumps. This makes it difficult to find a Lyapunov function to show the
asymptotic stability of the error dynamics. One approach for such systems is to find a state transformation that transforms the
original system into a new system without state jumps, for which conventional state observer techniques can be applied [3], [4].
However, such a transformation does not always exist and is in general difficult to find.

Figure 1: An example system with a single unilateral constraint.

2 Discrete state observer problem

Starting from the description of the dynamics in form of a measure differential inclusion, we make use of a time discretization
which is based on the numerical scheme by Paoli and Schatzman [5]. In this scheme, the contact force laws are formulated on
position level. Therefore, it is not required to keep track of an index set indicating whether or not a contact is open or closed,
as in the case of contact force laws on velocity level. The resulting discretized dynamics has the following form of a linear
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complementarity system (LCS)
xk+1 = Axk +Bwk +Evk,

zk = Cxk +Dwk +Fvk,

0 ≤ zk ⊥ wk ≥ 0,
yk = Gxk,

(1)

with the discrete state xk containing the generalized positions and velocities, the external input vk which is assumed to be known,
wk containing the contact force (or percussion), the contact distance zk (here the gap between the colliding body and the limiting
stop) as well as the measured output yk. The system matrices A to F in (1) are composed of the mass-, stiffness- and damping-
matrix of the underlying linear mechanical system, as well as the generalized force directions and the step size ∆t that has been
used in the discretization process. The output matrix G is assumed to be such that neither the contact distance nor the impact
time instants can directly be extracted from the measurements. For the example oscillator in Figure 1 this could mean that we
only measure the position q1 of the first mass.
For continuous linear complementarity systems, a passivity-based, Luenberger-type state observer has been proposed [6], which
does not apply in the presence of impacts. However, the formulation (1) allows us to investigate to what extent this approach
can be applied even if impacts occur. Analyzing the example system depicted in Figure 1 shows, that this Luenberger-type state
observer is not applicable in its standard form, if only the position of the non-impacting mass is measured. However, an extended
version of the observer that includes past and future measurements is applicable in such cases.
Furthermore, propagating equations (1) from an initial state x0 and collecting all outputs, all constraint distances, all constraint
forces and all inputs in

Yk =




y0
y1
...

yk


 , Zk =




z0
z1
...

zk


 , Wk =




w0
w1
...

wk


 and Vk =




v0
v1
...

vk


 , (2)

leads to a set of linear equations together with complementarity conditions of the form

Yk =Okx0 +MkWk +NkVk,

Zk =Okx0 +MkWk +NkVk,

0 ≤ Zk ⊥ Wk ≥ 0,

(3)

which is known as a mixed linear complementarity problem (MLCP). If the number of measurements is equal to the number of
states n (i.e. if k is equal to n− 1), then the matrix O :=On−1 = (G ;GA ; ... ;GAn−1) is equal to the well known observability
matrix of the non-impulsive motion. Therefore, assuming that the non-impulsive motion is observable, O is invertible and the
MLCP (3) can be written as a linear complementarity problem (LCP). The solution of this LCP for given measurements can serve
as a dead-beat observer, i.e. a state observer that yields an exact state estimation in finite time (in this case after n measurements).
In addition, the uniqueness of the LCP solution serves as a sufficient observability condition of the discretized system.

3 Conclusion

In this work, a numerical scheme was used to approximate the dynamics of mechanical systems with a single unilateral constraint.
The formulation of the contact force law on position level leads to a discrete linear complementarity system. This allows for a
simple dead-beat observer in the form of a linear complementarity problem. Furthermore, it allows the application of a passivity-
based, Luenberger-type state observer, even in the case of unknown impact time instants.
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EXTENDED ABSTRACT

1 Introduction

Friction and inertia loads play a relevant role in the operative performance of a mechanical system. For instance, in ball bearings,
a correct formulation that properly describes the rolling dynamic motion requires to understand the influence of contact and
frictional forces in order to accurately capture the slip, the rotation motion and the instant where the slip motion goes to pure
rolling or viceversa. Friction effects in sphere bodies can be classified in three parts: i) sliding f riction, where a set-valued force
law with two degrees of freedom generates a resistive force to slide; ii) rolling f riction, where two traslational degrees of freedom
are required in the formulations; it is a set-valued force law that generates a resistive moment to rolling and iii) drilling f riction
or Coulomb-Contensou friction is a set-valued force law that generates a resistive moment to the normal relative spin of the
bodies, thus only one rotational degree of freedom is required.

This work presents a new formulation to deal with the frictional impact of a spherical rigid body subject to friction in the field of
non-smooth dynamics. In order to consider the mechanical and the geometrical properties of a sphere, a rigid body formulation
with translational and rotational degrees of freedom is implemented which allows a complete general movement of the body. A
node of the sphere situated in its center is linked with other node to a planar surface or either to a body considered flexible or
rigid. The regularization of the variational frictional contact problem is performed with a mixed approach based on an augmented
Lagrangian technique. The Coulomb friction’s law leads to an implicit formulation that can be solved at every time step using a
Newton semi-smooth algorithm [1]. The equations of motion are integrated with the recent decoupled version of the non-smooth
generalized−α time integration scheme [2], where the constraints are imposed both at velocity and positions levels preventing
any non-physical penetration. Additionally, the numerical results do not depend on the definition of any user-defined penalty
parameter affecting the normal or tangential component of forces.

The nonlinear finite element method is adopted in this work to model the sphere element according to the methodology proposed
by Géradin and Cardona [4]. For the sphere element presented here, the generalized coordinate and velocity vectors are given by
q = [xT

A Ψ
T
A ]T and q̇ = [ẋT

A Ψ̇
T
A ]T , respectively; where xA is the position of node A referred to the inertial frame X , Y and Z

and ΨA is the rotational vector of node A at the current configuration and where the dots denote time differentiation, see Fig. 1.
Then, the general solution to the unilateral friction contact problem at position level is given by

(U ,ν) = arginf
[
Π int,ext(U)+Π c(U ,ν)

]

gN ≥ 0, νN ≥ 0, gNνN = 0; ‖gT‖ ≥ 0, ‖νT‖ ≤ µνN , ‖gT‖(‖νT‖−µνN) = 0; gT =−‖gT‖
νT

‖νT‖
(1)

where U is the global displacement, µ is the friction coefficient, Π c is the contact potential and Π int,ext represents the potential
energy of the external and internal loads. Then, gN is the normal gap and gT is the tangential relative displacement whereas νN and
νT are the normal and the tangential Lagrange multipliers at position level in the normal and tangential directions, respectively.
The constrained optimization problem presented in Eq.(1) is reformulated according to the proposal of Alart and Curnier for
quasi static problems in order to find the stationary values of an augmented Lagrangian function [1] which at position level is
given by

L p(U ,ν) =−gNkνN +
p
2

g2
N−

1
2p

dist2
[
kνN− pgN ,R

+
]
− kgT ·νT +

p
2
‖gT‖2− 1

2p
dist2

[
kνT − pgT ,CξN

]
(2)

where p is a penalty parameter and k is a scale factor for the Lagrange multipliers. Both p and k are positive scalars which
contribute to obtain an improvement of the convergence rate. Then, CξN is the extended friction Coulomb cone to the half line
R−(ξN), see [1]. Similarly, the augmented Lagrangian which regularizes the frictional contact problem at velocity level yields

L v(W ,Λ) =−ġNkΛN +
p
2

ġ2
N−

1
2p

dist2
[
kΛN− pġN ,R

+
]
− kġT ·ΛT +

p
2
‖ġT‖2− 1

2p
dist2 [kΛT − pġT ,CσN ] (3)

where W is the velocity jump and, ΛN and ΛT are the Lagrange multipliers that represent the impulsive forces in the normal
and in the tangential direction, respectively. Then, ġN,n+1 and ġT,n+1 are the normal and tangential velocities, respectively.
The contributions of the element to the discrete equations of motion and to the tangent operators are computed by the first and
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second variations of Eqs.(2, 3), respectively. These equations are asociated to the sliding friction as presented Cavalieri et al [3].
However, a real sphere is deformable and when rotates, an non-symmetric contact pressure distribution occurs. Then, the contact
reaction νN is displaced a distance ρ from the center of the mass of the sphere, see Fig.1. It produces an antagonist moment
M = ρνN that generates a rolling resistance. This effect is more evident in elasto plastic or visco elastic materials, as for example
in rubber composites of vehicle wheels. In a 3D movement, the moment M can be decomposed according to an orthonormal
frame at node P of the contact plane given by the vectors N , T1 and T2 ∈ R3 referred to the inertial frame, see Fig.1. Thus, the
moment can be written asM = MNN+M1T1+M2T2. As consequence of the rolling resistance, the displacement has to change
the direction when the angular velocity changes sign and has to be zero if there is no rotation velocity. For this reason, the rolling
friction model is a highly no-linear model and can be expressed as an inequality constraint. The rolling resistance produced by
the momentMT = M1T1 +M2T2 is represented by the following constraints

‖MT ‖≤ ρνN ‖ ωT ‖ (‖MT ‖ −ρνN) = 0 ωT =−‖ ωT ‖MT

‖MT ‖
(4)

where ωT is the angular tangential velocity, see Fig.1. Finally, the normal component of the moment produces the drilling
resistance where the equations can be also expressed as inequality constraints in analogous way as before

|MN | ≤ γνN |ωN |(|MN |− γνN) = 0 ωN =−|ωN |MN

|MN |
(5)

where ωN is the angular normal velocity and γ is parameter equivalent to ρ . Finally, the Eqs.(4,5) have the same structure as the
sliding friction model of Eq.(1) and thus they can be solved in a similar manner considering the tangential terms of the augmented
Lagrangian given in Eqs.(2,3).

A

X

Y

Z

XP

xA R

N

T2
P

ωT

mg

νN
ρ

ωN

Radius R = 0.5 m

Mass M = 1309 kg

Inertia moment I = 131 kgm2

Friction coefficient µ = 0.2

Rolling radius coefficient ρ = 0.04 m

Initial velocity vx = 2.5 m/s

Initial angular velocity ωz = 2.5 rad/s

(a) Sphere Contact Element. (b) Numerical Solutions.

Figure 1: Numerical example of a sphere rolling on a plane.

The method presented in this work is validated from a simple test presented by Acary and Bourrier.[5] where a sphere is rolling on
a planar surface. The initial conditions and mass properties are depicted in Fig.1-a. Figure 1-b shows that the sphere at beginning
is in sliding process reaching a maximum angular velocity at 0.256 s. This behavior can be confirmed with the curve vx−Rωz
that is different to zero. Then, the velocities vx and ωz decrease and the sphere goes in a pure rolling, it is vx−Rωz = 0, until
the movement stops completely as a consequence of the rolling resistance. Other more complex examples will be shown at the
congress.
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EXTENDED ABSTRACT 

1 Introduction 

We propose an approach to the simulation of freewheels in the context of non-smooth dynamics, showing that a formulation 

based on complementarity constraints leads to a versatile and efficient time integration of this class of devices, even when 

embedded in complex multibody frameworks. 

Freewheels, also known as overrunning clutches or one-way clutches, are unidirectional joints consisting of two rings, where the 

torque between the two rings can be transmitted in a single direction only, where they work as locked clutches. In the opposite 

direction, torque cannot be transmitted and they work as disengaged clutches [1]. Applications of this device are numerous in 

the field of mechanical engineering: for instance, they can be used for the automatic disengagement of motors when the output 

shaft is running faster, for safety or efficiency reasons such as in car automatic transmissions, in bicycles and in starter motors; 

otherwise, they can be used for generating intermitting unidirectional motion such as in dividers and conveyor belts. A remarkable 

application of freewheel mechanisms can be found self-winding watches, where the bidirectional oscillation of a small mass is 

used to store energy in the mainspring via unidirectional winding [2]. 

Different designs are available in literature: Fig.1 shows some common concepts. We note that most designs fall in two classes: 

on one hand we have freewheels that use jamming to lock the clutch simply using friction, such as the roller-type of Fig.1 a) and 

the sprag-clutch type of Fig.1 b), and on the other hand we have freewheels that use ratcheting where the reverse motion is 

counteracted by pawls that engage the teeth. 

 

a)                b)         c) 

Figure 1: a) roller-type freewheel, b) sprag-clutch freewheel, c) ratchet freewheel. Drawings from [1,3] 

In either case, conventional multibody tools already allow the modeling of these devices. However, in most instances one would 

need a complete 3D model including springs, sprags, rollers or pawls, each with complex 3D contact models, masses etc., hence 

leading to long computational times. In this work, similarly to [4] et al., we advocate the benefit of endorsing a custom model 

based on the mathematical framework of non-smooth dynamics. Such model expresses the behavior of both classes of freewheels 

with a single compact formulation, using complementarity constraints and set-valued force laws [5].  

2 Formulation 

If we assume that the jamming class of freewheels does not exhibit backlash or elastic deformation, its model corresponds 

immediately to a complementarity constraint of the type:  

 𝜆𝑖 ≥ 0  ⟂ �̇�𝑖 ≥ 0   (1) 

where 𝜆𝑖 is the torque reaction within the i-th freewheel, �̇�𝑖 is the relative rotation speed of the two rings.  

For the ratcheting class, one should consider the fact that the engagement of pawls happens only at steps with angular width  

𝛿𝛼,𝑖, that is also a cause of backlash that can be in the [0, 𝛿𝛼,𝑖] range, depending on when the freewheel starts the inversion. For 

a ratchet with z teeth, one has 𝛿𝛼,𝑖 = 2𝜋/𝑧, and if k pawls are unevenly spaced as in Fig.3.c), it is 𝛿𝛼,𝑖 = 2𝜋/(𝑧𝑘). This too can 
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be expressed via a complementarity constraint:  

 {
𝛼𝑖 = 𝑛 𝛿𝛼,𝑖 + 𝜑𝑖 : 𝜆𝑖 ≥ 0  ⟂ �̇�𝑖 ≥ 0 

𝛼𝑖 ≠ 𝑛 𝛿𝛼,𝑖 + 𝜑𝑖 : 𝜆𝑖 = 0  , �̇�𝑖 ∈ ℝ
   ∀𝑛 ∈ ℤ     (2) 

where 𝜑𝑖 is an optional phase of the first teeth engagement. We remark that in a 1D powertrain model one has �̇�𝑖 = �̇�𝑘 − �̇�𝑗where 

𝛽 is the rotation coordinate of some shaft, but more in general for a 3D multibody model one uses sparse jacobians 𝐷 such that  

�̇�𝑖 = 𝐷𝑖
𝑇𝒗 where 𝒗 is the vector of the generalized velocities of the bodies. 

We implemented the set-valued contact models above in a first order time stepper (discussed in [6]) that solves the non-smooth 

dynamics as a problem of Measure Differential Inclusions (MDI) over a time step ℎ:  

 {

𝝀 ∈ Υ ⟂ 𝒖(𝑙+1) ∈  Υ∗ 
𝑀(𝒗(𝑙+1) − 𝒗(𝑙)) = 𝒇(𝒒(𝑙), 𝒗(𝑙), 𝑡) + 𝐷(𝑙)𝝀

𝒒(𝑙+1) = 𝒒(𝑙) + ℎ𝒗(𝑙+1)

   (3) 

where we introduced a mass matrix 𝑀, system level forces 𝒇, system level reactions 𝝀, system level configuration 𝒒 and system 

level cone Υ = (×𝑖 Υ𝐹,𝑖) × (×𝑗 Υ𝐶,𝑗) × (×𝑘 Υ𝐵,𝑘). This is built with second-order cones Υ𝐶,𝑗  from the j-th frictional contact, with 

trivial cones Υ𝐵,𝑘 = ℝ for the k-th bilateral constraint, and with Υ𝐵,𝑘 = ℝ+ for the i-th freewheel. Also, Υ∗ is the dual cone of Υ.  

For the i-th ratcheting freewheel, the corresponding entry in the 𝒖 vector contains the �̇�𝑖 = 𝐷𝑖
𝑇𝒗 speed plus a stabilization term 

1

ℎ
𝛷𝑖 that uses the floor operator ⌊. ⌋ and takes care of both sub cases of Eq.2 in discretized form:  

 𝜆𝑖 ≥ 0  ⟂ 𝑢𝑖 ≥ 0   ,    𝑢𝑖 = 𝐷𝑖
𝑇𝒗 +

1

ℎ
𝛷𝑖   

 𝛷𝑖 = 𝛼𝑖 − (𝜑𝑖 + 𝛿𝛼,𝑖 ⌊
(𝛼𝑖−𝜑𝑖)

𝛿𝛼,𝑖
⌋).  (4) 

We also remark that, for 𝛿𝛼,𝑖 = 0 (null backlash) Eq.4 can be simplified by setting 𝛷𝑖 = 0, hence the same model can also 

reproduce the case of jamming freewheels as in Eq.1. The first part of Eq.3 is a Cone Complementarity Problem (CCP) and 

represents the most computationally intensive part of the time stepping scheme. We solve it using a projected spectral method or 

an accelerated Alternating Direction Method of Multipliers (ADMM) as described in [7].   

4 Conclusion 

We implemented the set-valued model of freewheels in our multibody simulation library, ProjectChrono, using C++ 

programming. The implementation is general in the sense that freewheels can coexist with rigid bodies, frictional contacts, 

actuators, clutches, brakes, finite elements etc. The freewheel can be used either in 1D powertrain models or interfaced to the 

rotational degree of freedom of revolute joints in 3D models. The model allows for backlash and arbitrary phasing of pawls. 

We tested the approach with benchmarks that demonstrated the precision and efficiency of the method. As an application, we 

used the model in the analysis and optimization of a self-winding watch, where the proposed model provided a big speedup 

respect to the full model that contains all the 3D parts of the freewheel. 
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EXTENDED ABSTRACT 

1 Introduction 

A miniature circuit breaker is a device that switches and/or protects the lowest common distributed voltage in an electrical system. 

It is designed to protect conductors and insulation from damage due to overload and short circuit. Usually, the performance of 

these mechanisms is not as desired, due to the manufacturing tolerances on links, clearances in the joints and the assembly 

tolerances. The spatial revolute joint with clearance in both axial and radial direction adds five extra degrees of freedom into the 

system. Compared to planar mechanisms, spatial mechanisms can generate more complicated functions with the same number 

of links. Most of the previous work is focused on the radial clearance in the planar and spatial revolute joints [1-5]. However, 

more recently the influence of the axial clearance in the revolute joint has been studied in [4]. Most of the mechanisms in the 

Schneider Electric company use frictional contacts. There are various compliant models available to correctly model the multiple 

impacts and friction [2, 4]. 

2 Miniature Circuit Breaker Mechanism 

Miniature circuit breaker construction is simple, however very precise. In fact, a miniature circuit breaker has no replacement 

parts. It is not designed to be maintained. When a unit goes bad, it is simply replaced. A typical miniature circuit breaker mech-

anism is depicted in Figure 1(a). 

All the mechanism parts are enclosed in between the case and cover parts. These parts are connected to each other through a 

revolute joint or frictional contact. In the following section we will see the detailed description of these joints and contacts. In 

the first step, the primary function of a mechanism is usually formulated in terms of kinematical quantities (link geometry, 

kinematic constraints, etc). Also, the various geometrical relations resulting from the kinematical analysis of the linkage mech-

anism are an essential ingredient for the dynamic analysis. The kinematical analysis of a miniature circuit breaker mechanism  is 

of great importance. It consists of seven links, seven revolute joints with clearance in both radial and axial direction and four 

frictional contacts (see Figure 1(b)). 

 

 

(a) 3D representation on C60 model. (b) Kinematic representation 

Figure 1: C-60 circuit breaker mechanism - ON position. 

3 Newton-Euler Formulation of the Equation of Motion 

In the Newton-Euler method the dynamics is written separately for each link/body. It includes the constraint forces acting on all 

bodies of the system and results in redundant equations with more equations than unknowns. These equations are evaluated in a 

numeric and a recursive way. However, by eliminating the reaction forces we can get the closed form of the dynamics.  
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The Newton-Euler equation of motion in matrix form is given as: 

(
𝑚𝐼3×3 03×3

03×3 𝐼𝑔
) (

𝑎𝑔

𝛼
) + (

𝑚𝑆(𝜔)

−𝑆(𝐼𝑔𝜔)
) (

𝑣𝑔

𝜔
) = (

𝐹𝑔

𝜏𝑔
) (1) 

where the subscript 𝑔 denotes the center of gravity (CG), 𝐶𝑔 ∈  ℝ3 is the coordinate of CG, m is mass of the body, 𝑎𝑔 is the 

acceleration, 𝐹𝑔 is the force acting at CG, 𝜏𝑔 is the moment about CG, 𝑀 = 𝑚𝐼3×3 is the mass matrix, 𝐼𝑔 ∈ ℝ3×3 is the inertia 

matrix about body’s center of gravity, 𝜔 is the angular velocity of the body relative to the inertial frame and expressed in body 

reference frame and 𝑆 is the matrix cross product operator, 𝑎 × 𝑐 ∶= 𝑆(𝑎)𝑐 and 𝑆 =  −𝑆𝑇 is a skew symmetric matrix. 

4 Sensitivity analysis and Experimental validation 

We have performed the sensitivity analysis, in order to simulate the geometrical variations of the breaker mechanism to minimize 

the manufacturing cost and to ensure the assembly requirements. In case of the output variable of contact force, the statistical 

distribution is from [12:0; 15:1]N which is well within the limit defined by the USL (16:0N) and LSL (9:0N) (see Figure 2). 

However, the Gaussian distribution is not centered, the index of absolute centering is calculated as Cc = 0:3314, and the process 

capability index is Cpk = 1:631. The positive shift in the distribution ensures good contact pressure between the moving and 

fixed contact, which ultimately helps to reduce the arcing between the contacts. It will help to ensure the safety of the product 

even in the case of erosion between the contacts. 

Simulation results are validated through the experimental tests (see Figure 3). The results of the experimental test are compared 

with the virtual test. In case of virtual test, the contact force at the static equilibrium is 14.96N. The percentage relative error in 

the contact force between the experiment and virtual test is 2.08%. 

 

 

 

Figure 2: Variation of contact force - ON position. Figure 3: Experimental test bench for contact force measurement. 

Conclusion 

This paper is devoted to the numerical simulation of the C-60 circuit breaker built by Schneider Electric, using the so-called 

compliant method. It relies on the compliant models used to model impacts and friction. Emphasis is put on the modeling of 

three-dimensional revolute joints with axial and radial clearance. Moreover, detailed comparisons with experimental data 

obtained at the Schneider Electric laboratory, prove the very good prediction capabilities of the compliant approach, for this type 

of mechanisms. 
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EXTENDED ABSTRACT

1 Introduction

Friction is an extremely complex mechanism, which involves micro-interactions between the surfaces in contact. However, in
multibody systems the general behaviour of friction at the macroscopic level is generally sufficient. Among the commonly used
friction models [3], the LuGre one is very popular in multibody system and motion control as it is computationally efficient and
able to reproduce most of phenomena observed in friction.

This paper presents an adaptation of the LuGre model, inspired namely from [5] for the management of the varying normal force
and from [2] for the management of the direction of the slip velocity.

2 Generalized 3D LuGre model

Let us consider a contact between a point A attached to body j with local position vector~rA and a plane attached to body i (Figure
1) defined by the local position vector~rP of a point P of the plane and its normal unit vector~n. A contact between a plane and a
sphere could be managed in a similar manner. The inter-bodies penetration δ and the penetration rate δ̇ can be computed as:

δ = (~eP − ~eA) ·~n δ̇ = − ~Vrel ·~n (1)
~eP and~eA being the respective position vectors with respect to the global reference coordinate system and~Vrel the relative velocity
of body j with respect to body i (the plane) computed e.g. at the middle of the penetration zone (point M in Figure 1).
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Figure 1: Contact between a plane and a point

The relative velocity is decomposed along the tangential (~Vt) and normal (~Vn) components
~Vn = (~Vrel ·~n)~n ~Vt =~n× (~Vrel ×~n) (2)

The normal force (N) is usually computed in terms of δ e.g. according to the Hunt and Crossley formula

N = Kcontactδ pK + Dcontactδ pD δ̇ (3)

with Kcontact the contact stiffness, Dcontact the contact damping, and pK and pD fitting coefficients.

The friction force on the plane is computed according to a vector version of the LuGre equations. The bristle deformation is
represented as a vector ~Z possibly taking place in all directions, and driven by

~̇Z =~Vt −~Z
σM

0 Vt

GM(Vt)
with GM(Vt) = µd +(µs − µd)e

(−| Vt
VSt

|α ) (4)

with µd and µs the dynamic and static (or breakaway) friction coefficients respectively, GM(Vt) the function describing the friction
coefficient in terms of the magnitude Vt of the sliding velocity, Vst the Stribeck velocity and α ranging from 0.5 to 2 [1]. Finally,
the friction force on the plane is calculated from

~F =
(

σM
0 ~Z + σM

1 ~̇Z + σM
2 ~Vt

)
N (5)
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with σ0 [m−1] the micro-stiffness, σ1 [s/m] the micro damping, and σ2 [s/m] the viscous effect, all of them per unit of normal
force.

The previous vector expressions will lead to 3 scalar equations, corresponding to the projections along the X, Y, Z coordinates of
a coordinate system, a priori arbitrary but usually attached to one of the contact surfaces.

With respect to the original LuGre model, the bristle deflection is 3D but, as it is driven by the tangential velocity vector, the
friction force is naturally aligned with the latter. The same technique was used in [2] but in 2D only as the contact plane (the
road) is known. Moreover, the normal force N is transferred from the expression of GM to equation 5, as in [5]. This allows to
manage more properly varying normal forces.

It can be demonstrated that under a constant sliding velocity ~Vt , the steady-state friction force reads

~Fss =

((
µd +(µs − µd)e

(−| Vt
VSt

|α )
)

~Vt

Vt
+ σM

2
~Vt

)
N (6)

which corresponds to the so-called GKF model [1].

3 Applications

The proposed model was first tested on a cube lying on the X-Y plane, subjected to gravity and a varying lateral force, the contact
being implemented through 6 contact points regularly spaced on a circle. The example demonstrates the ability of the projected
equations to be used in all directions, with multiple contact points and with varying normal force. The results perfectly agree
with the ones presented in [5].

The second example is more complex and corresponds to the experimental setup investigated in [4] (Fig. 2). The setup is
composed of 3 identical beams linked by a tie-boss, expected to represent turbine blades connected by friction elements. The
purpose of the arrangement is to induce relative slip at the contacts to dissipate energy by friction when the blades are excited by
frequencies close to resonance during speed up or slow down of the turbine. Out of resonance, the parts stick to each other and
no dissipation, and consequently no wear, takes place. The right part of Figure 2 shows the time history of the sliding velocity
exhibited by the LuGre model at some interface when the system is excited by a force of 0.5 N that follows a logarithmic swept
sine from 30 Hz to 80 Hz. It can be observed that sliding takes place around resonance. Out of resonance, microslips take place,
related to the bristle deformation, physically corresponding to deformation of the asperities in the contact. Comparison with the
regularized GKF model will also be developed.
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Figure 2: Experimental setup presented in [4] and example of simulation result
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EXTENDED ABSTRACT

1 Introduction

Rocking is a common behavior of rigid polyhedral blocks or stacks of multiple rigid blocks on a rigid base in response to dynamic
excitation. From an engineering viewpoint, rocking structures such as masonry columns and arches show remarkable resilience
under earthquake excitation [1]. At the same time, theoretical analysis of rocking systems is challenging due to the inherently
non-smooth, hybrid and non-linear nature of motion caused by unilateral rigid contact and friction. Impact modeling is perhaps
the most challenging aspect of the analysis.

Rigid impact models are typically formulated as instantaneous velocity jumps while the configuration of the system remains
unchanged. This modeling approach is merely a phenomenological description of a complex, multi-scale (both in time and space)
physical process and thus these models tend to involve empirically fitted model parameters (such as the classical coefficient of
restitution) with somewhat limited potential to predict individual motion trajectories. Yet, rigid impact models remain popular
due to their simplicity, which allows their integration into complex dynamic models.

Impacts often tend to be highly unpredictable if the impact process involves extended areas of contact. In those cases, the
impact process is characterized by the competition between two microscopic quantities: small mechanical deformations, and
small geometric imperfections of the contact surfaces. If the characteristic scale of deformations is significantly larger that
of geometric imperfections, then impacts are predictable and repeatable, whereas if it is significantly smaller than the scale
of imperfections, then impacts become unpredictable. Importantly, the impacts of rocking structures always involve extended
contact areas as impacts occur between two flat surfaces or between a straight edge and a surface.

Figure 1: a: Impact in a planar model of rocking. Solid arrows represent the horizontal and vertical component of the net impact
momentum. The position of the latter one is set by the dimensionless scalar parameter λ . b denotes the half-length of the base
edge. b,c: edge and facet impacts in a three-dimensional model.

2 Models of rocking impacts

Rocking is often investigated using planar models. Many models of planar rocking impacts were inspired by the seminal work
of Housner [2]. Typical assumptions of these models include lack of bouncing and slip, which are reasonable assumptions for
slender blocks and arches. Under these assumptions, a one-parameter family of physically feasible impact maps emerges. Hence,
planar rocking impact models involve one empirical parameter, which can be chosen in various ways. Popular dimensionless
parametrizations of the impact map include the ratio of post-impact and pre-impact angular velocities or a parameter λ specifying
the spatial position of the resultant impact momentum along the edge of contact [3], see Figure 1a. Experimental measurements
reveal remarkable variability of the impact parameter value even for apparently identical setups and initial conditions. The
variability is likely explained by sensitivity to geometric imperfections as highlighted above.

Works addressing three-dimensional rocking motion [4] have used a priori assumptions about impacts. A systematic investigation
of rigid impact in 3D appears to be missing at this time. Here we develop a new model of three dimensional rigid rocking impact.
Two types of impacts are considered (edge and facet impacts, see Figure 1b,c). By using methods similar to the literature
concerning planar rocking, feasible outcomes of the impact map are parameterized by two (edge impacts) or three (facet impacts)
scalars, representing the magnitude and position of the resultant impact momentum.
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3 Empirical fitting and theoretical bounds of impact parameters

In the case of planar impact models, physical laws yield theoretical bounds of the impact parameter. In particular, the parameter
λ in Figure 1a must be within the interval (0,1) if one assumes that impacts involve unilateral contact interaction and they
decrease the kinetic energy of the system. Empirical measurements of λ are mostly consistent with these findings, however
values larger than 1 are found in some cases. The discrepancy between theoretical predictions and empirical results can be
explained by unmodeled effects causing energy absorption between two impacts. Here, we identify similar parameter bounds for
three-dimensional impacts.

In contrast to planar models, facet impact maps exhibit intriguing examples of solution non-existence and non-uniqueness. This
new phenomenon originates in the fact that a block can rock around any of several vertices or edges immediately after an impact.
The impact map involves all of these different scenarios, and the number of feasible scenarios may differ from one. In order to
ensure solution uniqueness, we propose the elimination of one of the impact parameters, which results in a reduced model of
facet impacts with 2 scalar parameters. The reduced model provably provides a unique solution.

The reduced model is tested by numerical simulation and impact parameters are tuned to achieve the best possible fit to free
rocking experiments of cuboid blocks (Figure 2). We find that the reduced impact model matches experimental results well.
On the other hand, optimal values of impact parameters are often beyond theoretical bounds. Some possible reasons of this
discrepancy are briefly discussed.

Figure 2: Left: comparison of experimental measured angular velocity functions (thin lines and circles) and numerical simulation
with fitted initial conditions and impact parameter values (thick lines). Right: magnified detail of the same diagram.

4 Conclusions and future plans

We introduced a new 3D model of rocking impact, which is a natural extension of existing planar models. The new impact model
allows investigation of the safety of rocking structures against overturning by numerical simulation. Our approach uncovers all
feasible outcomes of an impact and thus it allows to assess the safety of rocking structures even if their behaviors are highly
unpredictable. To achieve this goal we propose that rocking motion is simulated with various values of the impact parameters
and the safety of the rocking structure is verified for each value.
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EXTENDED ABSTRACT 

There are two main ways of modelling a contact/impact event in the context of multibody dynamics: the non-smooth approach 

and the models based on contact forces. Each one has a distinct set of advantages and limitations [1]: non-smooth methods are 

known for considering bodies as rigids solids and their computational efficiency. However, some of these methods pose several 

issues when dealing with friction phenomena or multiple-simultaneous impact scenarios. On the other hand, models based on 

contact forces are continuous functions of the relative penetration (and its temporal derivative) of the contacting bodies, which 

are supposed to be deformable. Their main benefit is that there is no need to define unilateral restrictions. Nonetheless, the proper, 

accurate choice of the parameters of the definitions of the forces, as well as the right detection of the initial instant of contact [2], 

that makes the computing time to increase dramatically on certain occasions, are their most distinctive drawbacks. 

This work focuses its scope on these second methods, proposing several models developed under this methodology and 

discussing the main issues that have arisen when designing, modeling, and verifying these models. The main purpose of this 

paper is to provide a reference to those researchers that work with smooth methods in the context of multibody dynamics of how 

to deal with them. Among the models presented, there are some engineering-focused ones, whereas the readers can also find 

some more practical, day-to-day examples.  

The first model presented is a classical ball bearing, as shown in Figure 1. Two versions were developed. The first one, based on 

a sphere-sphere modelling of the contact between the elements, neglected axial loads. The latter, more advanced, considered 

axial loads and considered a sphere-cylinder contact interaction. The main problems faced with this model were related to the 

accuracy of the contact detection and the time step size. The proper choice of an ODE integrator from the Matlab library proved 

to be critical in the final results [3].  

 

Figure 1: Matlab plot of the first model introduced: a ball bearing.  

 

A model previously introduced and now further developed is a pool/billiard game [4] (see Figure 2). This time the pockets, as 

well as the cushions, have been modelled and implemented. In order to achieve this, some conditions have been defined to de-

activate the sphere-plane interaction when a ball places over a pocket; and an innovative sphere-triangular prism contact 

interaction has been developed for the cushion-ball contact in the pocket areas. Some of the main issues arisen during the design 

and modelling phases were related to the effects of each contact interaction on the rest of contact relationships. For example, the 

initial distance between the balls of the rack (coloured balls in Figure 2) had an impact on the introduction of high frequencies 

in some of the balls, which led to unreasonable vertical displacements. This made necessary to rethink the physical characteristics 

of each interaction in order to obtain consistent results compared to the experimental values. Similar conclusions and some new 

ones regarding the elasticity of the impact were obtained from an additional model, a Newton’s cradle, in which different contact 

force models and values of the coefficient of restitution, as well as sizes of the bodies, were considered.  
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Figure 2: Matlab plot of the second model: a pool/billiard game.  

 

 

Figure 3: Matlab plot of the third model presented: Newton’s cradle.  

 

The third model proposed is a Newton’s cradle, a device used with educational purposes to demonstrate the principles of 

conservation of momentum and conservation of energy with a set of swinging spheres (see Figure 3). In this case, two different 

situations were tested: a single ball was lifted and then released, and two balls were raised. Some issues arose related to the 

degree of elasticity of the impact and the contact detection between the static balls, as well as constraint violation phenomena.  
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EXTENDED ABSTRACT 
1 Introduction 

Vehicles, bicycles, cranes, human bodies and robots are everyday examples of multibody systems (MBS). To compute 
their kinematic and dynamic characteristics, such as velocities, accelerations and forces, it is essential to learn how to 
model and simulate MBS. The problem is that this learning, which requires rigor and perseverance at any stage, can 
be off-putting in B.Eng. and sometimes demotivating, given the effort involved even for simple applications: one just 
has to redo the equations of a small cart in 2D to be convinced. The objective of this work is to demystify the 
mechanical and numerical concepts underlying MBS models, via the development of an international Massive Open 
Online Course (MOOC) - Modeling and simulation of multibody systems [1] - which takes advantage of the symbolic 
generation of the multibody equations. 

2 Methods: symbolic approach in MBS 

First, the general MBS approach in education places each student at the center of the learning: the students must 
“immerse themselves” in all aspects of MBS for all the more satisfaction at the end. This means that the students can 
manage everything: they have their own “code” to process any application. The MBS approach has already shown 
two educational benefits [2]: 

1. It is well suited to the motivational learning of mechanics, by solving the MBS equations. 
2. It enables to deal with concrete everyday mechanical applications, and to visualize abstract concepts of 

mechanics, mathematics, and numerical methods, e.g.: a singular Jacobian matrix due to kinematic singularity; a 
numerical integrator struggling because of numerical stiffness due to dry friction; etc. It also enables them to forge 
links between these domains. 

Secondly, the symbolic approach of the ROBOTRAN software [3] particularly brings additional benefits. Overall, it is 
known to simplify equations [2]. But here, we will highlight three educational contributions of the symbolic approach: 

1. On the basis of a user-friendly graphical representation of any MBS, the software takes care of the necessary but 
tedious tasks (with great risk of human errors and of no real interest to the user), namely the generation of the 
MBS equations with formalisms such as the recursive Newton-Euler method or the virtual power principle, among 
others. ROBOTRAN does this whatever the complexity of the MBS (up to 300 degrees of freedom), such as the 
examples of Table 1 (third row). 

2. The software allows therefore the student to focus on pedagogically interesting topics, i.e. understanding then 
programming e.g.: i. a tire/ground contact model, ii. a muscle model, iii. numerical concepts such as kinematic 
loop closure, equilibrium model-based convergence issues, integration model-based stiffness, etc. iv. the selection 
of results that are relevant to analyze for real and realistic applications, such as: the quasi-static equilibrium or the 
modal analysis of a vehicle, the inverse kinematics or dynamics of a parallel robot, the reaction forces inside 
mechanical transmissions, the sizing of actuators, or the net torques quantification in the human body. 

3. As a practical asset, the symbolic equations can be generated remotely, which minimizes the local computer 
installation tasks, allowing any user to start quickly. 

3 Result and discussion: a MOOC in « Modeling and simulation of multibody systems » 

Our MOOC is based on prerequisites in Newtonian mechanics briefly reminded at the beginning of the course: linear 
algebra, vector theory and notation, basic numerical methods, and basic programming skills. The MOOC is general 
for any student wishing to learn modeling and simulation of MBS. To follow the course, the students can use the 
multibody software of their choice, e.g. from the list of software available at their institution or laboratory. However, 
to allow them to benefit from the symbolic approach, access to the ROBOTRAN software is also freely offered in the 
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context of the MOOC. The course was designed for a period of 14 weeks for students working 10–11 hours per week. 
The level is considered as intermediate (3-4th year of B.Eng.). The course type is instructor-led on a course schedule 
and is composed of 6 modules, detailed in Table 1. 

Table 1: Current content of the MOOC in Modeling and simulation of multibody systems. 

All along the MOOC, we present videos, examples, questions, and a rigorous writing of the fundamental concepts and 
equations. E.g: frames and vectors follow strict and systematic rules; there is no pseudo-centrifugal force; no over-
simplification of problems to reduce the equations; we start from 3D systems as a general case, and 2D applications 
is a particular case, the reverse being a bit misleading in our opinion. To conclude, the MOOC allowed students to 
understand and program MBS faster, from a simple cart-pendulum to 3D Merry-go-round, vehicle suspensions, 
parallel robots and human body. Based on our experience with the first version of the MOOC, the current perspective 
is to divide it into 2 sub-courses: roughly, an intermediate one for unconstrained MBS from modules 1 to 3, and an 
advanced one for constrained MBS from modules 4 to 6. 
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Modules Content Examples to model and simulate 

1. Tree-like MBS 

 
Bodies, joints, (Newton and Euler) equations of 

motion, modelling and simulation (motion 
computation by time integration, analysis of 
simple kinematic and dynamic performances 

 

Merry- 

go-round 

 

2: Forces and torques 

 

Introducing forces and torques in an MBS, and 
dealing with these ones: 1. joint forces; 2. 
external forces; 3. point-to-point forces 

Simplified 

vehicle 

suspension 

 
3. Driven motion 

 

Driven motion, i.e. imposing the time evolution 
of specific generalized coordinates in MBS 

SCARA-like 

pick-and- 

place robots  

 
4. Algebraic Constraints  Algebraic constraints (constrained MBS), DAE 

to ODE reduction and final equations of motion 
in minimal form 

Quarter-car 
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EXTENDED ABSTRACT

1 Introduction

Cardboard boxes are the most familiar form of packaging and are a key part of the world’s logistics and commodity distribution
systems. Mitsubishi Heavy Industries, Ltd. (MHI) has been manufacturing box making machinery since 1955. In this paper, we
will validate the co-simulation between multibody dynamics model simulating the motion of cardboard inside the counter-ejector
portion of box making machine as shown in Figure 1, and fluid dynamics model simulating the fluid blown from the top duct
over the cardboard sheet for robust stacking. Using validated model it will be possible to find operating condition that improves
stability and reliability for transport and stacking of large cardboard sheet at high operating speed.

Figure 1: Basic configuration of a box making machine

2 Simulation of cardboard through counter ejector

Cardboard is modeled as a discrete beam model which is fed into counter ejector through rotating rollers as shown in Figure 2.
As it passes, air blowing from duct pushes the cardboard down so that it gets stacked before the next cardboard enters the
counter ejector section. Collision with front stoppers damps the kinetic energy of the cardboard. Co-simulation is done between
multibody dynamics solver (MSC ADAMS) and fluid dynamics solver (ANSYS Fluent) through in-house coupling tool [1] which
transfers force and deformation between different software.

Figure 2: Representative CFD and MBD model of cardboard passing through counter ejector

3 Validation

Calibration of simulation model was done by measuring elemental stiffness and damping of cardboard sheet, pressure of airflow
inside the counter ejector and various other contact parameters. After that trajectory of cardboard sheet was measured using laser
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sensors and video imaging as shown in Figure 3 for different size of cardboard sheets with transport speed and gap between rollers
as experimental parameter. We used the collected data for validating the model in order to confirm the prediction capability of
co-simulation.

Figure 3: Deformation measurement through laser-sensor and video capture
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EXTENDED ABSTRACT

1 Introduction

Electric Vehicles (EVs) are complex systems made up of components with different nature and dynamic response. As such, they
can be considered multiphysics systems, in which mechanical, hydraulic, electric, electronic, and thermal effects, among others,
play an important role during operation and interact with each other. For instance, the performance of electrical and mechanical
components in EV powertrains is intertwined with their thermal state. This complexity must be considered during the product
development cycle and the operation time of the vehicle, not only at system level, i.e., from the point of view of the overall
behaviour of the whole car, but also at component level. Traditionally, new automotive components, technologies, and designs
have been validated by means of experimental tests with full-vehicle prototypes. This paradigm hinders the early detection of
defects and design flaws, which are often revealed only after field tests have started. The profound and rapid transformations
currently undergone by the automotive industry require, however, modern and flexible tools to test and validate new designs as
early as possible, before vehicle prototypes are ready.

Model-Based System Testing (MBST) is emerging as an enabling technology to allow the experimental testing of components
and algorithms from the early stages of product development cycle. MBST relies on the combined use of computer simulation
and physical experiments to streamline both component and system design and testing [1]. Cyber-physical test benches, in
which a real-world component under test is interfaced to a computer simulation of the overall system and its environment, are
an application example of MBST technology. Figure 1 shows the conceptual scheme and flow of information of such a bench,
aimed at testing electric motors for vehicle powertrains.

Driving interface

Full-vehicle virtual model

e-Motor physical twin

e-Motor test bench

Real-time co-simulation interface

Driving 
commands

Visual and 
force feedback Actuation command

Sensor information

Vehicle dynamics

Thermal and electric behaviour

e-Motor controller

e-Motor digital twin

(Multibody system dynamics)

Figure 1: Elements of a cyber-physical test bench for e-powertrain motors.

In the test bench shown in Fig. 1, the motor under test is interfaced to a full-vehicle multibody system (MBS) dynamics simulation,
which may reproduce a pre-defined manoeuvre or follow the commands of a human or virtual driver. The simulation determines
the loads that the motor under test would have to bear during operation, and these are exerted by means of a second electric
motor, in a back-to-back configuration [2]. Moreover, a digital twin (DT) of the motor is used to gain insight into the information
provided by the sensors mounted on the system and monitor its behaviour beyond directly available measurements.
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2 Research methodology

The operation of a cyber-physical test bench like the one described by Fig. 1 requires assembling together technologies from
different engineering areas.

In the first place, real-time capable models, simulation methods, and implementations are a critical part in MBST setups. They
must be detailed and accurate to guarantee reliable results, while complying with the predictability, compactness, and efficiency
requirements of real-time applications. The proposed test bench requires this of the simulation of the MBS vehicle dynamics,
and the electric behaviour and thermal effects within the motors [3].

The fidelity of computer simulations to the actual behaviour of the real-world systems that they represent needs to be ensured as
well, so that the experimental results collected using the test bench correspond to the true performance of the components under
test. The DT approach relies on a bi-directional exchange of information between the physical component and its virtual repre-
sentation that enhances the accuracy of the latter, while enabling techniques like virtual sensing, which provide more information
about the cyber-physical test bench than the one gathered by the system sensors alone or obtained from the simulation running
on its own.

Finally, the physical-virtual interaction is orchestrated by means of a hybrid co-simulation environment, compatible with the
Functional Mock-up Interface (FMI) standard.

3 Experimental setup

Our research team has designed and built two back-to-back cyber-physical test benches following the above-mentioned guide-
lines, as shown in figure 2.

Figure 2: MBST cyber-physical test bench for e-powertrain motors, currently under construction (left) and fully operational
scaled prototype (right).

A full-size testing facility for automotive-grade electric motors is currently under construction. The operation principles and
implementation details are presently being tested in an already operational scaled prototype for low-power electric motors.
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EXTENDED ABSTRACT

1 Introduction

Flexible multibody (MB) dynamics refers to the computational strategies used to determine time histories of motion, deformation,
strain, and stress of interconnected components undergoing large overall motion due to applied forces, constraints, contact, and
initial conditions. Often linearly-elastic MB simulations, where the bodies flexibility is taken into account under the assumption
of small deformations and strains, and a linear constitutive law, are sufficient for engineering systems. Linearly-elastic flexible
MB formulations are usually based on a co-rotational / moving frame approach. The well-known representatives are the floating
frame of reference formulation (FFRF) [1, 2] and the absolute coordinate formulation (ACF) [3, 4] (not to be mixed up with the
absolute nodal coordinate formulation (ANCF)). Both formulations are based on a body-fixed coordinate system, which allows to
use small strain measures, and may be employed to model arbitrary geometries discretized with solid finite elements (FEs). The
advantage of the FFRF is that within the body-fixed floating frame the local flexible coordinates may be easily reduced using well-
established modal reduction methods. Extensions are available to employ modal reduction also within the ACF framework, i.e.,
the so-called generalized component mode synthesis (GCMS) [5, 6] or extensions thereof [7], however, realized at the expense
of a nine-fold increase of the flexible modal coordinates. Which is why, the FFRF prevailed in the MB community, despite the
linear configuration space associated with the ACF, which yields a constant mass matrix. Nevertheless the ACF is popular within
the FE community because it is a tailor-made FE formulation for the efficient high-fidelity simulation of systems undergoing
large rigid body (RB) motions – the efficiency stems from the fact the Jacobi matrix may be pre-factorized once and for all times
[3].

Looking at the equations of motion (EOMs) of the ACF [4], we have,

MMMc̈cc+AAAbdKKKAAAT
bdcccf + cccT

f
∂AAAbd

∂cccT KKKAAAT
bdcccf +

∂ggg
∂cccT λλλ = fff , (1)

where MMM and KKK denote the constant mass and stiffness matrix from the underlying linear FE model, respectively, ccc denotes the
global nodal displacements, AAAbd = diag(AAA, . . . ,AAA) with rotation matrix AAA, cccf is the flexible part of ccc, ggg denotes the constraint
equations with Lagrange multipliers λλλ , and fff are the applied nodal forces. In comparison to the ACF, the FFRF EOMs read [2],

LLLT
FMMMLLLFq̈qqF +LLLT

FMMML̇LLFq̇qqF +diag(000,000,KKK)qqqF +LLLT
F

∂ggg
∂cccT λλλ = LLLT

F fff , (2)

where LLLF = LLLF(qqqF) is the coordinate Jacobi matrix between ccc and the floating frame degrees of freedom (DOFs) qqqF. It is clear
that we have highly non-linear stiffness terms but linear inertia forces when choosing ccc as DOFs (1), or highly non-linear inertia
terms but linear elastic forces when decomposing the DOFs into RB motion and local elastic deformation (2).

This contribution tries to combine RB DOFs with global elastic deformation DOFs to reduce the non-linearity of the conventional
ACF (1). In doing so, the necessity to calculate the RB motion from the global nodal displacement field to obtain cccf = cccf(ccc) and
AAAbd = AAAbd(ccc) becomes also obsolete. Hence, this paper drafts the idea of an improved ACF.

2 The method in a nutshell

Let us consider a representative FE-discretized body of a system with an attached floating frame F ; the origin of F is translated
by qqqt with respect to (w.r.t.) the origin of the inertial frame F and their orientations are related by the rotation matrix AAA. Hence,
the current position of the FE nodes is given by a RB translation, a RB rotation, and a flexible term [4, 2]

rrr = ΦΦΦ tqqqt +AAAbdxxx+ cccf, (3)

with ΦΦΦ t = [III . . . III]T, where III denotes the identity matrix, and xxx denoting the reference positions of the FE nodes in F . Eq. (3)
reveals that the configuration of the flexible body is fully described by the translation of F , the rotation matrix, and the flexible
deformation. Hence, these quantities are a suitable choice for the DOFs, i.e.,

qqq =
[
qqqT

t aaaT cccT
f
]T

, (4)
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where aaa = vec
(
AAAT). This specific choice leads to a linear mapping between the nodal positions and the DOFs,

rrr =
[
ΦΦΦ t

(
XXX⊗ III

)
BBB IIIbd

]
qqq = LLLqqq, (5)

where LLL is constant. BBB is a constant Boolean matrix such that vec(AAA) = BBBvec
(
AAAT), IIIbd = diag(III, . . . , III), XXX contains the reference

nodal position of node i in row i in contrast to the stacked notation of xxx, and ⊗ denotes Kronecker’s product. Hence,

ṙrr = LLLq̇qq, (6)

which yields a constant mass matrix and no quadratic velocity vector, since LLL = const.⇒ L̇LL = 000, see the contrast in (2).

The EOMs may then be derived concisely (exploiting (5) and (6)) via Lagrange’s equation for a general mechanical system, i.e.,

d
dt

(
∂T
∂ q̇qqT

)
− ∂T

∂qqqT
︸ ︷︷ ︸

inertia
forces

+
∂V
∂qqqT
︸︷︷︸
elastic
forces

+
∂ggg

∂qqqT λλλ
︸ ︷︷ ︸
constraint

forces

=
∂ rrr

∂qqqT fff
︸ ︷︷ ︸
applied
forces

. (7)

Note that linearly-elastic MB systems discretized via isoparametric FEs are fully described by [4, 2]

T =
1
2

ṙrrTMMMṙrr, (8)

V =
1
2

cccT
f KKKcccf, (9)

with the kinetic energy T and the strain energy V . Hence, the EOMs read



ΦΦΦT
t MMMΦΦΦ t ΦΦΦT

t MMM
(
XXX⊗ III

)
BBB ΦΦΦT

t MMM
BBBT (XXX⊗ III

)T MMM
(
XXX⊗ III

)
BBB BBBT (XXX⊗ III

)T MMM
sym. MMM






q̈qqt
äaa
c̈ccf


+

+




000 000 000
(CCCf⊗ III)T KKK (CCCf⊗ III) 000

sym. AAAbdKKKAAAT
bd






qqqt
aaa
cccf


+ ∂ggg

∂qqqT λλλ =




ΦΦΦT
t

BBBT (XXX⊗ III
)T

IIIbd


 fff , (10)

where CCCf is the rearranged version of cccf in analogy to XXX and xxx, as mentioned before.

3 Conclusion

This contribution drafts the idea of an improved ACF, which (i) reduces the non-linearity compared to the conventional ACF (1)
and (ii) eliminates the necessity to calculate the RB motion from the global nodal displacement field to obtain cccf = cccf(ccc) and
AAAbd = AAAbd(ccc) (1) via a clever choice of DOFs (4). This approach yields a constant mass matrix, a co-rotated stiffness matrix in
the flexible part, and a “small” non-linear stiffness matrix in the RB rotation part (10).

Combining linearised Tisserand constraints with the orthogonality condition of the rotation matrix as reference conditions may
eliminate coupling within the mass matrix, or other reference constraints may eliminate the non-linearity in the rotation part of
the EOMs. The influence of the choice of the reference conditions and the applicability of, e.g., methods of snapshots to reduce
the number of DOFs need to be investigated.
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EXTENDED ABSTRACT 

1 Introduction 

Modelling structures by beam-elements allows for very efficient computation of stress as result of (large) deformation. Beams 

can for example be used to model the leafsprings in flexure based mechanisms [1]. The stress computation can be divided in 

three steps, see Figure 1. 1) computation of the deformation and reaction forces in the mechanism. 2) computation of the internal 

forces and moments in each beam element on a finite number of points along the beam axis. 3) computation of the stress 

distributions over the cross sections based on the internal forces. The first purpose of this work is to show three methods to 

compute the internal forces (i.e. step 2). All methods give the same result if the deformation in each beam element is small. For 

larger deformations the results of the methods differ. The most accurate method is determined. 

Torsion of a rectangular beam element causes warping of the cross section. This warping is constrained at clamped sides of 

leafsprings which causes significant extra stiffness and stress [2]. This effect can be included in a beam element by introducing 

two extra deformation modes, e.g. [3,4]. The total torsional moment is in this case composed of the Saint-Venant torsion and a 

contribution of the bimoment [2], (the bimoment is the internal force related to the warping). The second purpose of this work is 

to propose a method to accurately obtain the Saint-Venant torsion and bimoment, which are essential for computing the stress as 

a result of torsion. 

           

Figure 1: Left: three steps in the stress-computation, right: forces and positions of a beam element 

2 Method  

In step 1 the following is computed: at each node the forces (𝑭𝑝 = −𝑭𝑞), moments (𝑴𝑝, 𝑴𝑞), the bimoments (𝐵𝑝, 𝐵𝑞), its 

position (𝒓𝑝, 𝒓𝑞) and orientation (𝑹𝑝, 𝑹𝑞), see Figure 1. The internal positions, 𝒓(𝑠), and orientations, 𝑹(𝑠), can be obtained 

based on the deformation modes. Based on this information, three different method can be used to compute the internal forces: 

1. Based on equilibrium: {𝐹𝑥 , 𝐹𝑦, 𝐹𝑧}
𝑇

= 𝑭𝐿(𝑠) = 𝑹𝑇(𝑠)𝑭𝑞,     {𝑀𝑥 , 𝑀𝑦, 𝑀𝑧}
𝑇

= 𝑴𝐿(𝑠) = 𝑹𝑇(𝑠)(𝑴𝑝 + (𝒓(𝑠) − 𝒓𝑞) × 𝑭𝑞) 

2. Based on the deformation modes. The mode shapes define the local displacement in the beam, which are related to the 

internal forces. For example the axial force is related to the axial displacement and the internal bending moments are related 

to the curvatures: 𝐹𝑥(𝑠) = 𝐸𝐴𝑢𝑥
′ (𝑠),    𝑀𝑧(𝑠) = 𝐸𝐼𝑧𝜙𝑧

′(𝑠) 

3. Load interpolation functions: If a beam-formulation [4] is used that is based on the Hellinger-Reissner formulation, the load 

interpolation functions can be used to define internal forces. 

 

In order to compute the stress as a result of torsion the Saint-Venant torsion, 𝑇𝑥, and the bimoment, 𝐵, have to be computed. Both 

are related to a derivative of the torsion angle and can therefore be obtained based on the mode-shapes: 

 𝐵(𝑠) = −𝐸𝐼𝜔𝜙𝑥
′′(𝑠), 𝑇𝑥(𝑠) = 𝐺𝐼𝑡 𝜙𝑥

′ (𝑠).  (1) 

The bimoment can optionally also be obtained by a linear interpolation between its values at the nodes (𝐵𝑝, 𝐵𝑞). However these 

methods are not very accurate. A better approximation can be obtained based on their relation with the total moment [2] which 

can be rewritten to a second order differential equation in 𝑇𝑥 by using eq. (1): 
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 𝑀𝑥(𝑠) = 𝑇𝑥(𝑠) + 𝐵′(𝑠)    ⇒     𝑀𝑥(𝑠) = 𝑇𝑥(𝑠) − 𝐸𝐼𝜔 𝐺𝐼𝑡⁄ ⋅ 𝑇𝑥
′′(𝑠)  (2) 

The boundary-conditions for this differential equation are that the Saint-Venant torsion at the both clamped sides of the leafspring 

equals zero. Based on this the differential-equation can be solved for 𝑇𝑥(𝑠) based on which the bimoment 𝐵(𝑠) can be obtained. 

3 Results 

The three methods are applied to a leafspring with properties: length: 𝐿 = 100 mm, width: 10 mm, thickness: 0.3 mm, material 

elasticity: 𝐸 = 200 GPa, Poisson ratio: 0.3. The left side of the beam is fixed to the ground and the right side is subjected to two 

different loading conditions. 

- Bending: 50 mm displacement in the y-direction; 

- Combined: 20 mm displacement in the y-direction, 20∘ torsion and zero rotation around the z-axis. 

Figure 2 indicates that all three methods give the same result if many beam elements are used, and that the equilibrium-method 

gives in general the best results. Figure 3 shows results for the methods to obtain the bimoment and Saint-Venant torsion, 

indicating that the method based on the differential-equation gives very accurate results.  

  

Figure 2: Two load-cases and the resulting internal forces evaluated at 𝑠 = 0.1𝐿 for bending and 𝑠 = 0.6𝐿 for combined. 

 

Figure 3: Bimoment and Saint-Venant torsion of the combined load-case for a leafspring modelled with 1, 3 and 10 beams. 

4 Conclusions 

This works shows three methods to obtain the internal forces in a beam element, which are essential to compute the stress. The 

most accurate method uses equilibrium to obtain internal forces. The bimoment and Saint-Venant torsion can accurately be 

obtained by an analytic solution of the differential equation that relates the total torsional moment to the Saint-Venant torsion. 
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EXTENDED ABSTRACT

1 Introduction

Soft actuators are highly demanded for the actuation of soft robotics, micro robotics and biomedical devices. Because of their
high efficiency in energy and flexibility in motion, the Dielectric Elastomer Actuators (DEAs) have served as artificial muscles for
soft robotics, see e.g. [1, 2, 3] and [4]. The DEA cell is essentially made with the dielectric elastomer sandwiched between two
electrodes. When the electrodes are charged, the electrostatic pressure will be induced in the dielectric elastomer leading to the
deformation of the DEA cell. In real applications, the DEAs are usually composed by multiple stacked DEA cells to obtain large
deformations. To efficiently predict and control the deformation of the DEAs, numerical modelling of the electromechanically
coupled problem in dielectric elastomers is required.

The fundamental theory of nonlinear electroelasticity has been addressed by e.g. [5] and [6]. Constitutive models of dielectric
elastomers have been investigated by e.g. [8] and [7]. In [9], a viscoelastic 3D finite element model is developed for the
simulation of DEAs. This 3D finite element model is coupled with rigid bodies in [10]. Since a large number of degrees of
freedom is required in the simulation of stacked DEAs by the 3D finite element element method, the computation is very cost
expensive for large systems. Additionally, some effort has to be made for the coupling between 3D finite element models and rigid
bodies in multibody system. To cope with these challenges, the electromechanically coupled Cosserat beam model is developed
for the simulation of DEAs recently in [11]. By applying proper electrical potentials on the electrodes, the developed beam model
allows for multiple deformation modes, including contraction, bending, shear and torsion. It is also possible to combine different
deformation modes in one beam to generate complex deformations.

To provide the actuation for robotic applications, the beam model for DEAs introduced above is extended to the multibody system
dynamics in this work. The governing equations, the kinematic variables as well as the constitutive law for the beam DEA model
will be introduced firstly. Then, the electromechanical coupling problem is solved within the variational time integration scheme
with null space projection. The performance of the developed model will be demonstrated in the numerical examples.

2 DEA beam model

By treating the electric potential ϕo at beam centroid and the incremental variables (α,β ) in the cross section as the electric
degrees of freedom ϕϕϕ =

[
ϕo α β

]
, the configuration of the Cosserat beam model is extended to

q =
[
φφφ d1 d2 d3 ϕϕϕ

]T (1)

with φφφ the coordinate of beam centroid and di (i = 1,2,3) the orthonormal triad. Corresponding to the electric potential, the
electric field at (X1,X2,s) in the beam can be computed, see [11], as

Ee = −
[

α(s, t)d1(s,0)+β (s, t)d2(s,0)+

(
∂ϕo(s, t)

∂ s
+X1 ∂α(s, t)

∂ s
+X2 ∂β (s, t)

∂ s

)
d3(s,0)

]
. (2)

The extended Neo-Hookean model for the dielectric elastomer [9] is applied in the beam formulation by integrating the strain
energy in the continuum over the beam cross section. The beam strain energy is given by

Ωb(ΓΓΓ,K,εεε) =
∫

Σ
Ω(C,Ee)dA, (3)

where ΓΓΓ and K are the beam stain measures, εεε is the strain-like variable conjugated with the electric displacement of the beam
and C is the right Cauchy Green tensor. The continuous Lagrangian is composed by the kinetic energy T (q̇) and the internal
potential energy V (q) with

L(q, q̇) = T (q̇)−V (q). (4)

For the coupled hyperelastic material in a DEA, the internal potential energy is computed by an integration of the beam strain
energy density Ωb in Eq. (3) over the line of centroids

V (q) =
∫

l
Ωb(s)ds. (5)
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The system is semi-discretized with 1D finite elements. Then a temporal discretization, in particular the discrete EulerLagrange
equations can be obtained by taking the variation of the discrete action and requiring stationarity. To eliminate the constraint
forces from the system, the nodal reparametrisation qn+1 = Fd(un+1,qn) and the discrete null space matrix Pd are applied to the
discrete EulerLagrange equations leading to

PT
d (qn)

[
∂Ld(qn−1,qn)

∂qn
+

∂Ld (qn,Fd(un+1,qn))

∂qn
+ fext−

n + fext+
n−1

]
= 0, (6)

where un+1 is the generalized configuration acting as the unknown variable, Ld is the discrete Lagrange, and fext−
n and fext+

n−1 are
the discrete generalized external forces.

3 Results

According to the specific application scenarios, several multibody systems actuated by DEAs will be developed in the numerical
results. One of the examples is the robotic arm holding a package, where the flexible robotic arm is modeled by the beam and the
package is treated as a rigid body. As shown in Fig. 1, by applying a nonuniform electric potential on the beam cross sections,
the bending of the beam is induced and the package can be moved onto the desk.

Figure 1: Robotic arm actuated by dielectric elastomer
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EXTENDED ABSTRACT

1 Introduction

The transport of containers filled with liquids finds application in several industrial cases, e.g. in food&beverage or pharmaceu-
tical production and packaging lines. Typically, the manipulation of such containers is assigned to linear transport systems or
to industrial serial robots, and the motion that is required to carry out the task is usually planar. The prediction of the liquid
behavior inside the container (also known as liquid sloshing), under given motions of the container itself, is important to check
whether the liquid would overflow, thus interrupting the industrial process. Additionally, a reliable sloshing prediction model can
be exploited to limit the stirring of the liquid during task execution. This paper presents the validation of a model for estimation
of the liquid maximum sloshing height (MSH), taking into account 2-dimensional planar motions of a cylindrical container.

2 State of the Art and Methods

The literature considers two main discrete approaches for the modelling of sloshing dynamics inside a container subject to 2-
dimensional planar motion: a spherical pendulum [1] and a 2-dof mass-spring-damper system [2]. In both cases, the trajectories
that are obtained from the resolution of the equivalent equations of motion (EOMs) are then employed to compute the MSH
of the liquid. Among the several techniques that can be found in the literature, a novel method, proposed in [3] and based on
the mass-spring-damper model, will here be used. This model was validated for rectilinear motions: the authors proposed the
possible extension to planar motions, but no validation was provided to this case. The latter is the objective of this article.

3 Sloshing Model

We will consider a cylindrical container of radius R, filled with a liquid of height h and mass mF . A simplified equivalent
mechanical model can be used to reproduce the liquid sloshing dynamics. In particular, the mass-spring-damper model comprises
a rigid mass m0 that moves rigidly with the container, and a series of masses mn, with each of them representing the equivalent
mass of each sloshing mode. Each modal mass mn is restrained by a spring kn and a damper cn.

Table 1: Required conditions on a discrete mechanical model to be representative of the liquid sloshing dynamics.

The equivalent masses and moments of inertia must be preserved. mF = m0 +∑∞
n=1 mn

(1)

The height of the center of gravity must remain the same for small os-
cillations of the liquid.

m0h0 +∑∞
n=1 mnhn = 0 (2)

The natural frequency associated with the n-th mode must coincide with
the one that can be obtained by the continuum model.

ω2
n = kn

mn
= g ξ1n

R tanh(ξ1n
h
R )

(3)

The sloshing force acting on the container wall must be the same as the
one calculated by the continuum model.

mn = mF
2R

ξ1nh(ξ 2
1n−1)

tanh(ξ1n
h
R )

(4)

The model parameters can be determined by imposition of the equivalence conditions [4], which are shown in Table 1. In
Equations (3) and (4), ξ1n is the root of the derivative of the Bessel function of first kind with respect to the radial coordinate
r, for the 1st circumferential mode and the n-th radial mode, while g is the gravity acceleration. The damping ratio ζn can be
determined by employing empirical formulas from the literature [4]. Depending on the assumption on the shape of the liquid free
surface during motion, two mass-spring-damper models can be considered: the linear model (L model) and the nonlinear one
(NL model).

4 Maximum Sloshing-Height Estimation

For a container under 2-dimensional planar motion on the horizontal xy plane, the excitation is provided by the container ac-
celerations along the x and y directions, namely S̈0 = [ẍ0 ÿ0]

T . The L model considers two decoupled EOMs in the generalized
coordinates sn = [xn yn]

T of the n-th mode: {
ẍn +2ζnωnẋn +ω2

n xn =−ẍ0
ÿn +2ζnωnẏn +ω2

n yn =−ÿ0
(5)
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(a) Eight-shaped motion (||S̈0||max ≈ 4.7
m/s2).

(b) Circular motion (||S̈0||max ≈ 5.8 m/s2).

Figure 1: Comparison between the proposed models and the experimental results for an eight-shaped trajectory and a circular
trajectory.

Under the assumption of a planar liquid free surface, the MSH of the n-th mode can be computed as:

ηn =
4hmn

mF R

√
x2

n + y2
n (6)

As far as the NL model is concerned, two coupled EOMs can be obtained:

{
ẍn +2ωnζn[ẋn +C2

n(x
2
nẋn + ynẏnxn)]+C2

n(xnẋ2
n + x2

nẍn + xnẏ2
n + xnÿnyn)+ω2

n xn[1+αn(x2
n + y2

n)
w−1]+ ẍ0

R = 0
ÿn +2ωnζn[ẏn +C2

n(y
2
nẏn + xnẋnyn)]+C2

n(ynẏ2
n + y2

nÿn + ynẋ2
n + ynẍnxn)+ω2

n yn[1+αn(x2
n + y2

n)
w−1]+ ÿ0

R = 0
(7)

where xn = xn/R,yn = yn/R. The NL model requires a nonlinear spring, with exponent w and coefficient αn ∈ [1/2,2/3]. The
liquid free surface is nonplanar and its shape can be described by means of a Bessel function. Analogously to the L-model case,
the estimation of the n-th mode MSH can be computed as:

ηn =
ξ 2

1nhmn

mF R

√
x2

n + y2
n (8)

The total MSH is the sum of the MSHs ηn for all modes.

5 Experimental Results

The experimental setup considered a cylindrical container with radius R = 50 mm and liquid static height h = 70 mm. The
employed liquid is water, which was coloured by adding dark brown powder, in order to obtain a better contrast for the image
processing analysis. The motions were performed by an industrial robot (Stäubli RX130L) and recorded by a GoPro Hero3
camera. The trajectories were planned so that the robot followed three paths, each of them with different motion profiles: a back-
and-forth linear path (indicated as l-motion); an eight-shaped path (e-motion); and a circular path, performed twice in succession
(c-motion). For the sake of brevity, only the results of two 2-dimensional planar motions are reported in Figure 1. It has to be
noticed that, while the NL model exhibits a better tracking of the liquid’s real MSH, the assumption of planar free surface of the
L model overestimates the MSH, hence providing a more conservative evaluation.

6 Conclusions

A novel technique for the MSH estimation of liquid inside a container subject to 2-dimensional planar motions was proposed,
extending what was presented in [3]. Results of the experiments were provided, to prove the effectiveness of the estimation.
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EXTENDED ABSTRACT 

The design optimization of vibrating mechanical systems properly designs the dynamic behavior in terms of eigenfrequencies 
and/or eigenvectors through modification of physical parameters. Design variables can include e.g. geometrical and material 
properties that have consequence on inertial, stiffness and damping terms. Diverse methods have been developed to address the 
assignment of desired eigenfrequencies, eigenvectors, or both for linear vibrating systems [1]. Conversely, the assignment of a 
desired dynamic behavior to mechanical systems characterized by nonlinear dynamic models, such as flexible-link multibody 
systems (FLMS), is still an open issue. This paper proposes a method based on an approximated parametric modal model to 
assign desired eigenfrequencies to FLMSs moving along a given path.  

FLMSs are modelled using the Equivalent Rigid-Link System (ERLS) approach [2]. The motion of the system is expressed 
through a coupled dynamic formulation that takes into account both the rigid-body dynamics and the elastic deformations of the 
links, modeled through finite element methods. 

Let 𝒙 ∈ ℝ  be the vector of model parameters, comprised of the ERLS generalized coordinates 𝒒 ∈ ℝ  and the design 
parameters 𝒚 ∈ ℝ  that can be modified, i.e., 𝒙 = {𝒒 𝒚 } . The eigenvalue problem, neglecting damping and considering a 
slowly varying motion (i.e., negligible velocity-dependent terms), is 

 𝑲(𝒙)𝜙 (𝒙) = 𝜆 (𝒙)𝑴(𝒙)𝜙 (𝒙),  (1) 

where 𝑴 and 𝑲 are the mass and stiffness matrix, respectively, 𝜆  is the ith eigenvalue and 𝜙  is the ith eigenvector. The Taylor 
expansions of order 𝑝 of 𝑴(𝒙) and 𝑲(𝒙) in a neighborhood of 𝒙  are 

 𝑴(𝒙 + 𝛿𝒙) ≈ ∑
𝑴(𝒙 )

𝛿𝒙 ,| |= 𝐊(𝒙 + 𝛿𝒙) ≈ ∑
𝐊(𝒙 )

𝛿𝒙| |=
,  (2) 

where the multi-index notation for partial derivatives has been used, i.e., 𝛼 is a n-tuple of nonnegative integers. Analogously, the 
Taylor expansions of order 𝑝 of 𝜆  and 𝜙  are 

 𝜆 (𝒙 + 𝛿𝒙) ≈ ∑
(𝒙 )

𝛿𝒙| |= , 𝝓 (𝒙 + 𝛿𝒙) ≈ ∑
(𝒙 )

𝛿𝒙| |=
.   (3) 

The coefficients of the Taylor expansion of the eigenvalues and the eigenvectors in (3) are computed iteratively [2,3] starting 
from the first up to the desired Taylor’s order 𝑝: by substituting the functions in (2) and (3), evaluated at 𝒙 = 𝒙 , in (1) and solving 
for the derivatives of 𝜆  and 𝝓  of order 𝑝, the following is obtained: 

 
𝜕 𝝓
𝜕 𝜆

= 𝜕 𝑴𝜕 𝜆 − 𝜕 𝑲 𝜕 𝑴𝜕 𝝓 †

⎩

⎨

⎧

∑ 𝜕 𝑲𝜕 𝝓| |=
≠| |

− ∑ 𝜕 𝑴𝜕 𝝀 𝜕 𝝓| |=
≠| |
≠| | ⎭

⎬

⎫

,   (4) 

where † denotes the pseudoinverse matrix and 𝛽 = (𝛽 , 𝛽 ) and 𝛾 = (𝛾 , 𝛾 , 𝛾 ) are two multi-indexes. 

Let us denote the Taylor expansion of order 𝑝 of the ith eigenvalue by 𝜆 (𝒙). In this work, it is proposed to further simplify 𝜆 (𝒙) 
by neglecting the terms in which variables 𝒚 have degree higher than 1. The obtained polynomial, which is henceforth denoted 
by 𝜆 (𝒙), is linear in the variables 𝒚. The rationale behind this logic is that this approximation is beneficial from the point of 
view of numerical tractability of the eigenfrequency assignment problem, whereas the loss of accuracy is not problematic, since 
eigenfrequency assignment is often carried out despite having an incomplete or uncertain knowledge of the system 
eigenfrequencies [4]. 

For any trajectory 𝑡 ⟼ 𝒒(𝑡), 𝑡 ∈ [0, 𝑇], it is possible to define the cost function 𝑓 (𝒚) = ∫ 𝜆 (𝒒(𝑡), 𝒚) − 𝜆 (𝑡) d𝑡
𝑻

𝟎
, where 

𝜆 (𝑡) is a function that encompasses all the desired eigenvalues at any time instant. The optimal values of the design parameters 
can be computed solving the optimization problem 

 min
𝒚∈

𝑓 (𝒚).  (5) 

It must be noted that 𝑓 (𝒚) is a quadratic function, and if the constraint set Γ can be defined by linear equalities and inequalities, 
the optimization problem (5) is quadratic. 
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In order to validate the proposed method, the two-degree- of-freedom (dofs) flexible-link planar manipulator in Figure 1.a is 
considered and the lowest eigenfrequency is to be designed to a desired value. The links of the mechanism are modeled by means 
of Euler-Bernoulli beam elements. The resulting model has 23 dofs, with two rigid dofs of the ERLS, i.e. 𝒒 =  {𝑞 𝑞 } , and 
21 elastic dofs. 

The desired eigenfrequency is assigned by the addition of two point-masses: one placed at the elbow joint, and one placed at the 
end of the second link. Let 𝑚  and 𝑚  be the masses to be determined. Hence, 𝒚 = {𝑚 𝑚 } . It is supposed that the maximum 
allowable value for both 𝑚  and 𝑚  is 0.250 kg. 

 

Figure 1: Finite element model of the flexible-link manipulator (a). End-effector trajectory (b). 

The trajectory in Figure 1.b is traced by the end-effector. The trajectory has been discretized with 152 samples at constant time 
rate. Each point in the figure represents a sample. The same discretization will be used throughout the present example. 

The Taylor expansion of order 4 of the lowest eigenfrequency has been computed, in a neighborhood of 𝒙 =
{1.817 rad 5.312 rad 0.125 kg 0.125 kg} . The position at the expansion point is the one indicated by the circle in Figure 
1.b, i.e., the middle of the trajectory, and the mass is halfway between zero and the maximum allowable value. 

The maximum relative error of 𝜆  is 0.09%. If the nonlinear, higher order terms of 𝒚 are discarded, the approximation is obviously 
deteriorated, but still acceptable. The maximum relative error of 𝜆  is 1.6%. 

The optimization problem (5) is solved using an interior-point algorithm with the objective of designing the lowest 
eigenfrequency 𝜆 (𝑡) ≡ 190 Hz. The coefficients of function 𝑓  have been computed by quadrature, using the trapezoidal 
method. The obtained optimal modifications are 𝑚 = 0.225 kg and 𝑚 = 0.000 kg. The numerical solution of problem (5) can 
be computed efficiently, as the algorithms for quadratic optimization require few iterations to converge. The eigenfrequencies of 
the original and modified systems are shown for comparison in Figure 2. 

 

Figure 2: Eigenfrequency comparison. 

The results indicate that, if the mechanism is modified according to the proposed method, the obtained first eigenfrequency of 
the mechanism falls within ±3 Hz of the desired frequency for this example.  
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EXTENDED ABSTRACT 

In the field of flexible multibody dynamics, many applications consists of systems of which individual components are subjected 

to large rigid body motions and small elastic deformations. Under these circumstances, the floating frame of reference 

formulation, or simply the floating frame formulation, is a very suitable formulation to describe the system’s dynamics. In this 

formulation, the generalized coordinates of a single flexible body consist of the absolute coordinates of the body’s floating frame 

relative to the inertial frame and a set of coordinates that describe the body’s elastic behavior locally, relative to the floating 

frame.  

For general purposes, the local elastic coordinates can be interpreted as the generalized coordinates corresponding to the 

reduction basis with which linear finite element models of induvial bodies are reduced, using well-developed model order 

reduction techniques. For the sake of simplicity and without loss of generality, suppose that the elastic behavior is described by 

Craig-Bampton boundary modes only. In this case, the generalized coordinates consist of the absolute floating frame coordinates 

and local interface coordinates. This is shown schematically in figure 1. 

The different bodies of the multibody system are connected to each other at the interface points. The corresponding kinematic 

constraints are enforced using Lagrange multipliers. The resulting equations of motion form a set of differential-algebraic 

equations. In order to solve for the system’s motion, it is essential that the generalized coordinates describe each body’s 

configuration uniquely. This means that any combination of the local elastic coordinates may not result in rigid body motions, 

as these are already described by the absolute floating frame coordinates.  

Assuming that the set of (possibly unreduced) local elastic coordinates could still describe rigid body motions, a set of six 

constraint equations can be imposed on the local position and orientation of the floating frame. These constraint equations will 

be referred to as the floating frame constraints. In literature various choices for the floating frame constraints are reported. Most 

commonly encountered methods attach the floating frame to an interface point, attach the floating frame to the body’s center of 

mass, compute the floating frame coordinates as the (weighted) average of interface coordinates or compute the floating frame 

coordinates by minimizing a body’s elastic energy.  

In the standard floating frame formulation, the constrained equations of motion are solved numerically. At each time step, the 

constrained equations of motion are solved for the generalized accelerations and Lagrange multipliers. Only the independent 

generalized accelerations are integrated in time twice, to obtain the independent generalized coordinates at the new time step. 

The dependent generalized coordinates at the new time step are determined such that the kinematic constraint equations are 

satisfied on the position level. To this end, a Newton-Raphson procedure is used, in which the newly obtained independent 

generalized coordinates are accepted and only the dependent generalized coordinates are updated. Once the constraints are 

satisfied with sufficient accuracy, the constrained equations of motion are formulated on the new time step and the process is 

repeated to advance in time further. 

 

 

Figure 1: Generalized coordinates in the standard floating frame formulation. 
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Consider a body with 𝑁 interface points. Let the floating frame be attached to point 𝑃𝑗 of which the absolute coordinates with 

respect to inertial frame 𝑂 are denoted by 𝐪𝑗
𝑂,𝑂

. The local interface coordinates are denoted by 𝐪𝑗,𝑗. The absolute interface 

coordinates are denoted by 𝐪𝑂,𝑂. In earlier work, the authors presented a method that defines the floating frame constraints by 

demanding zero elastic displacement and rotation in a material point to which the floating frame is attached [1]. This can be 

formulated as: 

 [𝚽𝐶𝐵]𝐪
𝑗,𝑗 = 𝟎 (1) 

in which [𝚽𝐶𝐵] is the 6 × 6𝑁 constant matrix of Craig-Bampton boundary modes evaluated at the location of the floating frame 

𝑃𝑗. The floating frame constraints (1) can be used to establish unique kinematic relations that express variations in the absolute 

floating frame coordinates and variations in the local interface coordinates in terms of variations in the absolute interface 

coordinates. This can be expressed in the following general form: 

 𝛿𝐪𝑗
𝑂,𝑂 = [𝐀1(𝐪𝑗

𝑂,𝑂, 𝐪𝑗,𝑗)]𝛿𝐪𝑂,𝑂, 𝛿𝐪𝑗,𝑗 = [𝐀2(𝐪𝑗
𝑂,𝑂, 𝐪𝑗,𝑗)]𝛿𝐪𝑂,𝑂 (2) 

in which [𝐀1] and [𝐀2] are transformation matrices that still depend on the absolute floating frame coordinates and local interface 

coordinates. The main advantage of this method is that it (I) removes the rigid body motions from the elastic coordinates and (II) 

simultaneously enables the multibody system’s constrained equations of motion to be reformulated in terms of absolute interface 

coordinates. In these coordinates, kinematic constraints can be enforced directly, eliminating the Lagrange multipliers from the 

problem. The resulting equations of motion in this new formulation form a set of more convenient differential equations in terms 

of the absolute interface coordinates, which are considered to be independent coordinates. The absolute floating frame 

coordinates and local interface coordinates are now considered to be dependent coordinates.  

Solving the transformed equations of motion numerically in time can be done using standard techniques. At each time step, 

absolute acceleration of the interface coordinates �̈�𝑂,𝑂 is solved from the system’s equation of motion. By numerical time 

integration, the incremental change in the absolute interface coordinates Δ𝐪𝑂,𝑂 is obtained and the absolute interface coordinates 

at the next time step can be computed.  

However, the system’s global mass matrix and elastic forces depend in general on the orientation of the floating frame and the 

local elastic deformation, i.e. on the dependent coordinates. In order to compute these accurately, it is found to be essential to 

determine the global position and orientation of the floating frame on the new time step accurately.   

 

The problem can be formulated as follows: Given the absolute interface coordinates on the new time step, how to determine 

the absolute floating frame coordinates such that the floating frame constraints are satisfied on the new time step? 

 

Substituting the incremental change in independent coordinates Δ𝐪𝑂,𝑂  in equations (2) results in an incremental change in the 

floating frame coordinates Δ𝐪𝑗
𝑂,𝑂

 and local interface coordinates Δ𝐪𝑗,𝑗. These coordinates can be updated by: 

 𝐪𝑛+1 = 𝐪𝑛 + Δ𝐪𝑛 (3) 

in which 𝑛 denotes the number of the incremental update and 𝐪 refers to either set of coordinates. Due to the integration error, 

the new local interface coordinates (𝐪𝑗,𝑗)𝑛+1 will in general not satisfy the floating frame constraints (1). To solve this, the 

updated dependent coordinates can be used to update the transformation matrices to [𝐀1]𝑛+1 and [𝐀2]𝑛+1. With this, equations 

(2) are used to obtain improved increments Δ𝐪𝑛+1 in the dependent coordinates, and (3) is used to obtain improved coordinates. 

This process is repeated until the floating frame constraints (1) are satisfied with sufficient accuracy. Note that throughout the 

above incremental updates, the change in the absolute interface coordinates Δ𝐪𝑂,𝑂 is kept fixed: It is determined from the 

numerical time integration and accepted.  

In the full paper and corresponding presentation, all details relevant for a successful numerical implementation of the above 

formulation that is kinematically consistent are presented. It is explained that in practice only very few iterations are required to 

satisfy the floating frame constraints, as time steps will be generally small. Moreover, it is explained that these iterations are 

computationally cheap and do not result in a significant increase of the overall simulation time, because the iterations are 

performed on the body level and not on system level. Relevant numerical examples are used to explain why updating the  absolute 

floating frame coordinates could be of importance for obtaining realistic simulation results. 
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EXTENDED ABSTRACT

1 Introduction

High-performance sailplanes have a large envelope of operating speeds. Fixed-geometry aircraft are designed to be a compromise
for this wide speed range. Form-variable – or morphing – wings have shown to increase performance particularly when the
leading edge of the wing is morphed in combination with a conventional trailing-edge flap [1, 2, 3]. Morphing leading edges
have been modeled with traditional “hinged” mechanisms [2, 4] and with compliant mechanisms [3, 5]. Here, flexible multibody
dynamics including rigid and flexible bodies is applied to a hinged mechanism, see fig. 1. Flexible multibody simulation is
a valuable tool to simulate and optimize flexible deformations and large displacements and rotations that are desired in this
behavior. An in-house flexible multibody simulation code SIMULI is extended here to accommodate simulation and sensitivity
analysis for the design optimization of a morphing leading edge for sailplanes.

The developed methodology includes efficient sensitivity analysis for use in gradient-based design optimization of flexible mech-
anisms. In the following, this is developed for the simulation of a morphing leading edge concept using a flexible wing structure
and a mechanism with rigid bodies driving the deformation from the high-speed profile configuration to the low-speed profile
configuration.

2 Flexible multibody dynamics

The simulation of flexible multibody dynamics is categorized in three subcomponents as described in [6]: governing equation,
time integration and nonlinear solver. The simulation is referred as primal analysis to differentiate from the sensitivity analysis.
The governing equations are given by index-1 differential–algebraic equations for the motion of flexible multibody systems and
the constraint equations of kinematic joints,

R =

[
m JT

Φ
JΦ 0

][
q̈
λ

]
−
[

Fext +Fv −d q̇− k q
Fc

]
= 0, (1)

where R is the residual, q is the generalized position, λ are Lagrangian multipliers of the kinematic constraints, m is the mass, d
is the damping, k is the stiffness, Φ are kinematic constraints, J is the Jacobian (i.e. the partial derivative with respect to position),
Fext is the external force, Fc is the right hand side of acceleration constraints, Fv is the quadratic velocity force and overdots
represent the first ?̇ and second ?̈ differentiation with respect to time. Single underlined symbols ? represent vectors, double
underlined symbols ? are two-dimensional matrices and those without underlines are scalars.

The floating frame of reference formulation (FFRF) is used to represent flexibility [7]. The generalized positions of a flexible
body with FFRF is given by the position and orientation of the reference frame and flexible deformations of the FE nodes. In this
implementation of FFRF, a linear-elastic material model is used, which leads to a linear stiffness matrix, while the mass matrix
is highly nonlinear. Numerical time integration is implemented with generalized-α method as a predictor–corrector scheme. To
consider the nonlinearities of the system, Newton–Raphson iterations are used.

3 Design sensitivity analysis

The sensitivities of the system responses with respect to certain parameters are useful in design optimization, uncertainty analysis
as well as the direct use of the sensitivities. Design sensitivity analysis is carried out here with a semi-analytical approach using

Figure 1: Morphing wing with mechanism for — high-speed and — low-speed airfoil configurations.
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direct differentiation. The differentiation must be carried through all three steps of the calculation routine: governing equation,
sensitivity analysis and nonlinear solver.

The direct differentiation of the primal equations results in the governing equations for the sensitivity analysis,

∇R =

[
m JT

Φ
JΦ 0

][ ∇q̈
∇λ

]
−∇Fpseudo, (2)

where the pseudo load ∇Fpseudo contains the partial derivatives of the system parameters,

∇Fpseudo =

[
∇Fext +∇Fv −∇mq̈−∇d q̇−d ∇q̇−∇k q− k ∇q−∇JT

Φ λ
∇Fc −∇JΦ λ

]
. (3)

To limit the implementation effort in the simulation code, the partial derivatives are evaluated with numerical forward differences,
thus resulting in a semi-analytical approach. The Jacobian of the sensitivity analysis is that of the primary analysis [6], allowing
for an efficient calculation method of the gradients. This is the key to efficient sensitivity analysis of multibody dynamics.
Without this simplification, the Jacobian of the sensitivity analysis is four-dimensional, requiring excessive memory usage.

4 Morphing wing model

The design of the target geometry of the morphing wing sailplane in undeformed and morphed configuration is presented in [1]
and shown in fig. 1. A significant performance advantage over conventional sailplanes with a camber changing flap is calculated.
In earlier work [5], the morphing actuation is intended to be achieved using compliant mechanisms.

In this work, a conventional “hinged” mechanism is investigated for actuation. Flexible multibody dynamics with FFRF is applied
to the planar model of the mechanism, consisting of the flexible outer shell modeled with Euler–Bernoulli beams and four rigid
bodies for the actuation, that are connected by five revolute and one rigid joints. Here, we are especially interested that the wing
profile in morphed configuration approximates the target shape as closely as possible, while complying with the material limits.

To understand how these are effected by the design variables, a sensitivity analysis of the deviation of the morphed configuration
from the target shape described by the root mean square error and the maximum stress is performed with respect to design
variables that include geometric properties, material properties and the position and torque of the actuator. Fig. 2a shows the
stress distribution during the motion of the mechanism and fig. 2b shows the sensitivity with respect to the Young’s modulus (see
full paper for full set of results). The results of the sensitivity analysis show how the design parameters can be changed in order to
improve the design and can be used in uncertainty analysis or in gradient-based design optimization to find the optimum design
of the actuation mechanism.

(a) Stress σ [MPa] (b) Stress sensitivity w.r.t. Young’s modulus ∂σ/∂E [MPa/MPa]

Figure 2: Analysis results for the morphing wing via flexible multibody dynamics in SIMULI
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EXTENDED ABSTRACT

1 INTRODUCTION

The inverse dynamics of flexible mechanical systems is concerned with searching forces acting on the system such that a finite
number of selected points of the system follow a prescribed motion. One subclass of such systems are elastic strings for large
deformations which can be seen as a one-dimensional continuum. Here the aim is to find a force which acts at one end of the
string, such that the other end follows a prescribed trajectory (see Fig. 1). In this connection, the end of the string might be
attached to a mass point or connected to a rigid body (see below).

In the first part of this contribution two methods are presented which enable this class of problems to be solved. More precisely,
a space-time finite element method and an approach based on the method of characteristics are established. Both methods are
based on a simultaneous space-time discretization of the problem at hand (see [3]). In the second part of this contribution a
strategy to solve a cooperative control problem consisting of a rigid body controlled through several elastic ropes undergoing
large deformations is presented (see Fig.2). For that purpose, the rigid body can be described as a Cosserat point subjected to
geometric constraints.

b

{ei}

f (t)

E,ρ ,A0

γ(t)

g

r

s

m

Figure 1: Illustration of the elastic rope for large deforma-
tions only actuated by f (t) at s = 0 such that the rope at
s = 1 follows the prescribed trajectory γ(t)

fk(t)

{di}

x̄(t)

{ei}

g

sk

B

γrb(t)

Figure 2: Cooperative transport of a rigid body through
k ∈ N elastic ropes only actuated by fk(t) at sk = 0 such
that the prescribed motion of the rigid body is realized

2 ELASTIC ROPES

The motion of elastic ropes (see Fig. 1) undergoing large deformations can be described in terms of the normed arc-length
s ∈ S = [0,1] ⊂ R in the reference configuration by quasi-linear hyperbolic partial differential equations (see [1] for more details)
of the form

A(r,s, t)∂ 2
t r(s, t)−∂s(B(r,s, t)∂sr(s, t)) = C(r,s, t) ∀ (s, t) ∈ Ω (1)

Note, that due to the quasi-linearity of the problem at hand, the coefficients A ∈ R , B ∈ R and C ∈ R may depend on the space
and time variables as well as on the solution r(s, t) : S × T = Ω ⊂ R2 7→ R3 for time t ∈ T = [0,∞). To solve the PDE at hand
uniquely the following initial

r(s,0) = r0(s), ∂tr(s,0) = v0(s) ∀ s ∈ S (2)

and boundary conditions
B∂sr(0, t) = f (t), B∂sr(1, t) = n(t), r(1, t) = γ(t) ∀ t ∈ T (3)
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need to be defined. Herein f (t) : T 7→ R3 is the searched actuating force at s = 0 and n(t) : T 7→ R3 is the contact force at s = 1.
If a mass point is attached to the rope at s = 1, the contact force can be directly computed from the prescribed trajectory of the
rope at s = 1 and hence the trajectory of the mass point via

n(t) = m(∂ 2
t γ(t)+g) (4)

Now, the initial boundary value problem constituting the control problem at hand can be solved by applying the newly proposed
numerical method based on a simultaneous space-time discretization.

3 RIGID BODY

When considering general rigid bodies, in principle the same strategy as for the attached mass point can be applied. The actuating
forces needed to achieve the desired motion of the rigid body can be calculated directly from the governing equations of motion.
These forces can then be inserted into the Neumann boundary condition of the control problem (3). In this contribution a Cosserat
point subjected to geometric constraints is used to describe the motion of a rigid body with density ρ0 : B0 7→ R and total mass
M =

∫
B0

ρ0 dV (see [2] for more details).

M∂ 2
t x̄− fext = 0 (5)

Ei j∂ 2
t d j − f i

ext +Λi jd j = 0 (6)
gc(di) = di ·d j −δi j = 0 (7)

Herein Ei j are the components of the referential Euler tensor which is closely related to the classical inertia tensor of rigid body
dynamics. Furthermore, fext is the resultant external force and f i

ext are the external director forces. The geometric constraints (7)
are enforced by the Lagrange multipliers Λi j. To force the rigid body at hand to follow a prescribed motion γrb(t) =

[
γx̄ γdi

]T

additionally to the holonomic constraints (7), the following control constraints

gs = q− γrb(t) = 0 (8)

are introduced. In (8) the motion of the rigid body, which is fully described by the directors di : T 7→ R3 and the position of the
centre of gravity x̄ : T 7→ R3 is contained in q =

[
x̄ di

]T . The servo-constraints (8) of course must not violate the holonomic
constraints (7). The differential part of the DAE at hand, consisting of (5) and (6), together with the control constraint (8) yield
an algebraic equation for the actuating force f̄ (t) =

[
fext f i

ext
]T conjugate to q given by

f̄ (t) = D∂ 2
t γrb(t)+Fγrb(t)− Ḡ (9)

with

D =

[
M 0
0 Ei j

]
, F =

[
0 0
0 Λi j

]
, Ḡ =

[
G
0

]
(10)

where G is the gravitational force. Note that the actuating forces depend on the Lagrange multipliers and hence a unique solution
for the actuation of the rigid body requires the Lagrange multipliers to be partly specified. In essence, this amounts to partly
specifying the stresses within the rigid body.

After f̄ (t) =
[

fext f i
ext

]T is computed, the k ∈ N contact forces nk(t) for the k ropes at sk = 1 can be easily computed by knowing
the position of the contact point of the rope at the rigid body through the following linear relation:

n(t) = H−1 f̄ (t) (11)

Herein the invertible matrix H depends on the contact points of the k ropes and the rigid body. Once the forces nk have been
calculated, each rope can be solved separately by inserting the forces into the corresponding boundary condition of the quasi-
linear hyperbolic partial differential equation established in the first part of this contribution. The applicability of this cascade-like
approach is underpinned by numerical investigations.
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EXTENDED ABSTRACT

1 Introduction

Interface reduction is a recurring problem in substructuring and model reduction theory [1]. In structural dynamics, some of
these interface reductions perform reduction at system-level considering the assembled system while others perform reduction at
component-level by considering the uncoupled substructures [2, 3].

In flexible multibody dynamics, the interfaces are primitive geometric features, i.e. points, lines, and surfaces, employed to define
mechanical joints, and their deformation is strongly coupled to the internal dynamics of a component, and can therefore not be
reduced to a small number of nodes. Therefore, a double problem arises: reducing the dofs associated with the interface nodes
in order to have an efficient reduced model, linking the interfaces of two bodies in a correct way to form a joint. The presence of
a joint between two bodies means that there cannot be a common reduction of the interfaces, or at least that it must be updated
over time as the configuration of the bodies changes. In practice, what is done is to individually reduce each interface to a single
virtual node, usually a not collocated node outside the volume of the body. This reduction occurs through two types of multipoint
constraints (MPCs): the rigid multipoint constraint, usually referred to as the RBE2 element, and the interpolation multipoint
constraint, usually referred to as the RBE3 element [4]. Subsequently, the virtual nodes of the two interfaces are linked through
kinematic constraints necessary to define a type of joint.

In [5] the authors raised the problem of the scarce use of RBE3 in multibody simulations and identified the disappearance of
the dependent coordinates, operated by FE software after the process of eliminating the multipoint constraints, as one of the
possible causes. The method proposed in [5] has practical implications to be used in commercial FE software but neglects
important aspects related to the presence of MPCs and generic reference conditions (RCs) within the Finite Element Floating
Frame of Reference Formulation (FE-FFRF). Here, a different approach is presented that is perfectly integrated inside the FE-
FFRF working with every RCs.

2 Methodology

Given a component discretized into FE, let B, I , and V , be the sets of boundary, internal, and virtual nodes, respectively. All
interface nodes belong to B, while V contains the virtual nodes necessary to create an MPC; the remaining nodes belong to I .
The virtual nodes are necessary to create an MPC and can be collocated, that is physical nodes of the mesh or non-collocated
nodes, i.e. nodes not belonging to the body’s volume. Then, the RBE2 and RBE3 elements can be described in terms of the
mentioned sets:

F : B→ V ⇒ qB = FqV , (RBE2) (1a)
G : V →B⇒ qV = GqB, (RBE3) (1b)

where F and G are linear functions of the independent nodes whose expressions are reported in [4, 5]. The vectors qB and qV
contain the displacements of nodes belonging to B and V , respectively. Usually, dim(V )< dim(B) and this explains the limited
use of RBE3 in multibody applications. While imposing the RCs on the virtual nodes of the RBE2 elements is often immediate,
doing the same with the RBE3 element needs some tricks.

Suppose to apply the RCs on the virtual nodes of V and that the RCs can be expressed through the following linear constraint
equations

DqV = 0 (2)

where D is a matrix containing the coefficients of these equations.

2.1 RBE2 element

By introducing Eq.(1b) into Eq.(2), we derive

DF†FqV = 0⇒ DF†qB = 0⇒ B2 = null(DF†) (3)
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where F† is the generalized inverse of F and B2 is the matrix of the RCs such that qB = B2η being η a reduced set of independent
elastic parameters. Usually, this procedure is not needed as B2 can be directly found removing the constrained dof from qV , i.e.

qV = B2q∗V (4)

where q∗V is the reduced set of independent elastic coordinates. Exploiting Eq.(4), it is derived that

qB = FB2q∗V ⇒ T = FB2 (5)

in which T is the transformation matrix that contains both the RBE2 and RCs.

2.2 RBE3 element

By introducing Eq.(1b) into Eq.(2), we have

DGqB = 0⇒ qB = B2η , B2 = null(DG) (6)

By substituting into Eq.(1b) we obtain qV = GB2η . In this case, the direct substitution carried out in the RBE2 element is not
possible and the final transformation matrix T≡GB2 maps a reduced set of independent elastic parameters into the virtual node
displacement vector qV .

3 Numerical simulation

To demonstrate the applicability of the method the normal modes of a connecting rod with simply-supported RCs have been
derived. Fig. 1 confirms that the RBE2s stiffen the component preventing deformation of the interfaces.

Figure 1: Normal modes of a simply-supported connecting-rod: (left) the first three flexible modes and natural frequencies
considering two RBE2 elements; (right) the first three flexible modes and natural frequencies considering two RBE3 elements.

4 Conclusions

A novel formulation to introduce MPCs within FFRF-base multibody codes has been proposed. The final transformation matrices
mapping the set of independent parameters/coordinates into the virtual node displacements are compatible with the reference
conditions necessary for a correct application of the FE-FFRF.
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EXTENDED ABSTRACT 

1 Introduction 

The use of flexible multibody models of vehicles is of major importance in aerospace, mostly due to their flexible appendages 
but not only, and for ‘light’ road vehicles. It is not common the use of flexible bodies in the modelling of heavy railway vehicles 
such as freight locomotives, as the flexibility of the vehicle mechanical components is not expected to play a role in their 
dynamics. However, when the purpose of the study of these vehicles is not only to understand how the degradation of some of 
their structural components affects their performance but also how their level of degradation can be sensored in order to deploy 
maintenance action, the dynamic response of particular mechanical components may be of importance. A flexible multibody 
methodology based on body referential and mode component synthesis is applied here [1,2]. The reference conditions and the 
use of virtual bodies [3] are overviewed and advanced in order to accommodate the practical finite element models of the flexible 
components. The dynamics of the railway locomotive with flexible bogie chassis and wheelsets is simulated in realistic operating 
conditions in a mountainous railway track, being the results discussed with the emphasis on their use to support the equipment 
sensoring for maintenance planning purposes. 

2 Flexible Multibody Methods 

The flexible multibody formulation used in this work assumes that the structural deformations of the flexible bodies are elastic 
and small. The finite element method is used to describe the body structure about a body fixed frame, with no restrictions on the 
type of finite elements used for the body representation, as shown in Fig.1(a) [2]. The reference conditions used in this work to 
ensure that the rigid body motion is unique are selected among the fixed node, mean axis and principal axis conditions. It is 
shown that for general flexible bodies the use of mean axis or principal axis conditions is preferred to the use of fixed node 
conditions because these ensure that the location of the body fixed frame and the orientation of its axis are consistent with the 
assumption that the first moments of area are null and that the inertia products of the inertia tensor are null. Furthermore, being 
the finite elements used in the construction of the flexible body models unrestricted it can happen that solid elements, with 3 
degrees of freedom (dof) and beam or shell elements with six dof per node are used in the model. This has no consequences 
when using the mean axis or the principal axis conditions, but it is problematic when using a fixed node condition. 

The mode component synthesis is used to reduce the number of generalized coordinates required to represent the flexible body. 
To the set of vibration modes associated to the lower natural frequencies of the bodies a set of static correction modes is added 
to ensure the correct representation of local deformations [4]. 

    
 (a) (b) 

Figure 1: General representation of a flexible multibody highlighting the use of virtual bodies to setup kinematic joints. 

The use of the complete library of kinematic joints, already developed for use rigid multibody systems, is available to the modeler 
by using virtual rigid bodies, as depicted in Fig. 1(b). These virtual bodies are massless and rigidly attached to particular points 
of the flexible body, generally nodes. The issue addressed in this work is that when the nodes of the finite element model only 
have 3-translation dof, at least three nodes are required to define the kinematic constraints with a virtual massless body. By using 
these enhanced formulation the flexible multibody methodology used here is able to handle any finite element model generated 
with the use of any commercial, or homemade, finite element code, turning the task of developing the multibody model and the 
finite element models of the flexible bodies into independent tasks. 
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3 Vehicle Model with Flexible Components 

The complete model of the freight locomotive is similar to that presented in a companion paper [4], a is not further detailed here. 
The bogies of the locomotive consider that the chassis and the wheelsets are flexible as shown in Fig. 2, i.e., they allow for 
structural deformations. Although no consequences in term of vehicle dynamics are expected, the dynamic response of the 
flexible components can be used for structural health monitoring. The main objective is that by using healthy and damaged 
models of the selected structural elements it is possible to relate structural performance with damage condition. In this form, a 
maintenance program for the locomotive bogies can be envisaged based on sensor data. 

 

 

Figure 2: Exploded view of the railway locomotive model highlighting the flexible bodies of the motor bogies. 

4 Preliminary Conclusions 

In the process of applying a well-known flexible multibody methodology to the study of a realistic railway vehicle several 
shortcomings of the original methodology are addressed and solved. The consequences of separating the multibody and flexible 
bodies modelling tasks implies that no restrictions exist for the selection of finite elements. Due to the existence of finite elements 
with six and with three dof per node, the application of reference conditions and of virtual bodies has limitations that have to be 
overcome. This work not only shows how to generalize the use of reference conditions and virtual bodies, independently of the 
number of dof per finite element node, but also show, in a practical application to a freight railway vehicle, the use of flexible 
multibody models for structural degradation and maintenance planning. 

Acknowledgments 

The work reported in this paper has a fundamental input from the Shift2Rail JU under the project LOCATE (Locomotive bOgie 
Condition mAinTEnance) with the grant nº881805. This work was supported by FCT, through IDMEC, under LAETA project 
number UIDB/50022/2020. 

References 

[1] J. Ambrósio, J. Gonçalves, Complex Flexible Multibody Systems with Application to Vehicle Dynamics, Multibody System 
Dynamics, DOI: 10.1023/A:1017522623008, 6(2), 163-182, 2001. 

[2] J. Ambrósio, M. A. Neto and R. Leal, Optimization of a complex flexible multibody systems with composite materials, 
Multibody Systems Dynamics, 18(2), 117-144, 2007. 

[3] J. Gonçalves, J. Ambrósio, Advanced Modeling of Flexible Multibody Dynamics Using Virtual Bodies, Computer Assisted 
Mechanics and Engineering Sciences, 9 (3), 373-390, 2002. 

[4] P. Millan, J. Pagaimo, J. Ambrósio1, H. Magalhães, P. Antunes, Influence of the Friction Model on the Dynamics of Railway 
Freight Vehicle, ECCOMAS Thematic Conference on Multibody Dynamics, Budapest, Hungary, December 12-15, 2021. 

124



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Flexible Multibody Impact Simulations of Hierarchically Refined Isogeometric Models
Tobias Rückwald, Alexander Held, Robert Seifried

Institute of Mechanics and Ocean Engineering
Hamburg University of Technology

Eißendorfer Straße 42, 21073 Hamburg, Germany
{tobias.rueckwald, alexander.held, robert.seifried}@tuhh.de

EXTENDED ABSTRACT

1 Introduction

The objective of this work is a detailed simulation of impacts in flexible multibody systems. Thereby the floating frame of
reference formulation is used [1], which requires global shape functions of the flexible body. A finite element model consisting
of isoparametric elements is often used to determine the global shape functions. A disadvantage of isoparametric elements is
that the geometry is discretized. Impact simulations however, depend on an accurate representation of the geometry. As an
alternative approach, isogeometric elements can be used where there is no error in the representation of the geometry. For this
reason, the isogeometric analysis (IGA) will be employed in this work to determine the global shape functions. Furthermore, the
isogeometric finite element model will be refined using two different approaches. The differences between the most commonly
used refinement, the global refinement, and a local refinement using a hierarchical approach will be compared in an impact
simulation.

2 The IGA in a Flexible Multibody Impact Simulation

The main advantage of the IGA is the exact representation of the geometry. This is achieved by the use of basis-splines (B-splines)
as the local shape functions of the isogeometric elements. These splines are defined in the so-called parameter space which can be
seen in Fig. 1. The figure also shows the knots which span the elements. In order to visualize the geometry, the parameter space
is transformed into the physical space. This transformation is accomplished with the non-uniform rational B-splines (NURBS).
For a more detailed introduction to the IGA, see, for instance, [2].
In the context of a flexible multibody simulation, the finite element model is then reduced. To capture precise deformations and
stresses in the area of contact, a large number of eigenmodes would be required. Instead, here a combination of eigenmodes and
static shape functions are used to describe the flexible body. Low frequency eigenmodes represent the global deformation, and
the high eigenfrequency static shape functions capture the local deformation in the contact area. Here, another feature of the IGA
is advantageous. Compared to isoparametric elements, isogeometric elements can approximate high modes more accurately [2].
Besides an efficient approximation of the flexible body through global shape functions, an efficient refinement of the flexible
body in the contact area is necessary in advance.

3 Hierarchical Refinement

In impact simulations, particularly high forces and stresses occur in the contact area. Therefore, many elements and degrees of
freedom in the contact area are necessary for an accurate simulation. The basic approach to refine the IGA model consists of
a combination of two global refinement approaches. On the one hand, the order of the B-splines can be increased, and on the
other hand, additional knots can be inserted. These refinements do not affect the geometry but more elements are created and the
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Figure 1: Parameter space and physical space in the IGA.
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global refinement local refinement

elements

contact elements

Figure 2: Differences between global and hierarchical (local) refinement for an axisymmetric sphere.

number of degrees of freedom is increased. The disadvantage of inserting knots is shown on the left-hand side of Fig. 2. The
accumulation of elements in the contact area influences the element distribution in the whole body. Local refinement strategies
are required to address this issue. One method for a local refinement involves a hierarchical approach which can be seen on the
right-hand side of Fig. 2. The concept of the hierarchical refinement is the property of B-splines to be represented by a linear
combination of finer B-splines defined on smaller knot-intervals, see Fig. 3. A detailed introduction to the hierarchical refinement
in the IGA can be found in [3]. The locally refined and reduced isogeometric model is then incorporated in a flexible multibody
simulation as described in Section 2.
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Figure 3: Concept of the hierarchical refinement in the IGA.

4 Application Examples

Two application examples are presented in this work. In the first application example, the impact of two flexible spheres is
modeled. The spheres are represented by an axisymmetric semicircle, as depicted in Fig. 2. The impact is simulated by a penalty
method and is limited to a frictionless normal contact. The analytical solution of Hertz [4] and a full nonlinear isoparametric finite
element model in ANSYS are used as references. Additionally, the focus will be on comparing a globally and locally refined IGA
model. Both models have an identical element density in the contact area. The models are then compared in terms of accuracy
and computational speed. The second application example involves a wave propagation setup in which elastodynamic effects are
represented in a long flexible rod. Further application examples include large rigid body rotations.
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EXTENDED ABSTRACT

Soft material robots are an emerging and fast-growing field of research with potential application in various technical fields.
These applications include, but are not limited to medical applications and all sorts of human-machine-interaction. Due to the
soft structure, conventional components and design methodologies are not applicable. Therefore, new actuators, sensors and
control concepts are currently developed.

Soft robots are particularly suitable for gripping applications. Their flexible design allows them to grip differently shaped objects
with little control effort while their softness protects even sensitive objects from damage. For reliable control of the gripping
process of various objects accurate knowledge about the position, orientation and deformation of the gripper is essential. Many
soft robots use the bending deformation of long slender rods to generate the necessary motion. For example, the fingers of a
flexible hand can be considered as such a deformable rod. Therefore, especially bending sensors are of interest for soft robots.
However, conventional sensors cannot be used for estimation of the robot’s curvature, since they would destroy the robot’s
softness. Other conventional sensors with an already flexible structure, such as strain gauges, cannot be used due to the large
strains that occur in soft robots. Therefore, various, mostly resistive, capacitive, magnetic or optical, sensors are currently being
developed for soft robots.

Conventional actuators cannot be integrated into soft material robots, since they are rigid components. They would counteract
the soft structure. Additionally, conventional actuators are designed for rigid robots with a very limited number of degrees of
freedom. As soft robots typically have an unlimited number of degrees of freedom conventional actuators are often not suitable
for the actuation of soft robots. Therefore, alternative concepts, such as cable-driven actuators, shape memory alloys (SMA) or
electroactive polymers (EAP) as actuators are necessary for soft robots.

Furthermore, for simulation and control of soft robots accurate modeling of soft robots is required. Modeling rod-like structures
with large deformations is especially important for soft robots. In contrast to rigid robots and flexible link robots, large elastic
deformations occur in soft robots. Therefore, established modeling methods in traditional robotics, such as modeling with rigid
multibody systems or flexible multibody systems using the floating frame of reference approach, are unsuitable for soft robots.
For soft robots methods such as ANCF, the geometrically exact rod theory or piecewise constant curvature approaches are
necessary.

In this contribution a toolkit is presented, which has been developed for the design of new soft robots. It contains concepts for
the sensing, actuation and modeling of soft robots. In fig. 1 an overview of the components in this toolkit is given. Some of these
components will then be used in this contribution to build a gripper with three fingers. It is based on the structure of a human
hand and is constructed from three simple soft robot segments.

Conductive
foam

Capacitive Optical Camera

Sensors

Tendon SMA EAP

Actuators

Rod Theory ANCF Constant curvature

Models

Figure 1: Overview of the Toolbox.
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One of these segments is shown in fig. 2. The soft robot segment is made of foam and is actuated by a tendon. In addition, a
resistive bending sensor made of electrically conductive foam is integrated. The resistive curvature sensor is based on electrically
conductive foam attached to the robot. Deformations of the foam lead to a change in electrical resistance which can be measured
and used to determine the curvature of the soft robot. For the conductive foam a high conductivity and a sufficient mechanical
robustness to prevent fatigue and the formation of cracks is of importance. The resistance of the foam can be measured with a
simple voltage divider. Since the sensor behavior is nonlinear and hysteretic, a neural network is used to determine the curvature
of the soft robot from the measured foam resistances. In fig. 3 the total bending angle of the soft robot segment, measured with
the electrically conductive foam, is shown for a sinusoidal variation of the bending angle. From the measured curvature of all
three fingers of the gripper the shape of the gripped object shall be determined.

The soft robot segment is actuated by a servo via a tendon. This allows a simple design, easy control and comparatively high
actuation forces. For the simulation of the gripping process the geometrically exact rod theory is used. The three fingers of the
gripper are modeled as separate rods. This model can represent bending, torsion, axial deformations and shear deformations.
However, due to the design of the gripper the dominating deformation is bending.
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Figure 2: Soft robot segment.
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Figure 3: Measured and true bending angle.
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EXTENDED ABSTRACT

1 Continuous optimisation problem

This work aims at computing the optimal sequence of body motion that maximises the displacement of the centre of mass of soft
worm-like body. The body has been discretised in space, and its kinematics is given by a vector xxx(t) = {xxx0(t),xxx1(t), . . . ,xxxm(t)}
that represents the body coordinates at each one of the M nodes xxxi(t). The dynamical equilibrium is given by a second oder ODE
that for each point xxxi reads,

gggi(ẍxx, ẋxx,xxx,uuu)≡ ρ ẍxxi +ηηη ẋxxi +∇xiU−mmmi(t) = 0, i = 1, . . . ,M (1)

with mmmi(t) an input function, U(xxx) an elastic potential, and ηηη a frictional coefficient matrix. The optimisation of the locomotion
is considered by minimising the following cost function:

J(T ) =
1
2

∫ T

0
(xxx(t)− xxxd)

T R(xxx(t)− xxxd)
T dt +

α

2

∫ T

0
||mmm(t)||2dt

with xxxd a constant target position, R a weighting matrix, and [0,T ] the interval of interest. Parameter α represents the cost of the
active bending of the worm. In summary, we aim at solving the following continuous optimisation problem:

min
mmm

J(T ) (2)

s.t.gggi(ẍxx, ẋxx,xxx,mmm) = 0 (3)
ẍxx(0) = x̄xx0, ẋxx(0) = v̄vv0 (4)
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0.1

0.2

(a) (b)

Figure 1: (a) Schematic of worm model with set of forces that form an active moment Mi, and (b) Illustrative motion for a given
sequence of active moments, with center of mass x̄xx.

2 Optimality equations of discretised problem

We follow the approach discretise-then-differentiate in order to solve numerically the optimisation problem [1]. In the following
we replace the superscript i indicating the node for simplicity. The cost function J(T ) is discretised in time with a series of time
point tn,n = 0, . . . ,N and replaced by

J =
1
2 ∑(xxxn− xxxd)

T R(xxxn− xxxd)+
α

2

N

∑
n=1
||mmmn||2

129



For Peer Review Only

ECCOMAS Multibody Dynam
ics 2021

and the set of ODEs in (1) are replaced by the following set of equations at each time tn+1:

gggn+1 ≡ ρ
∆v
∆t

+∇xU +ηηηvvvn+1 +mmmn+1 = 000

hhhn+1 ≡ vvvn+1−
∆xxx
∆t

= 0

In order to write the optimality conditions we build the Lagrangian function [4, ?]:

L = J+
N

∑
n=1

λλλ ngggn +
N

∑
n=1

µµµnhhhn (5)

The optimality conditions then read:

∂L
∂xxxn

= 000 : R(xxxn− xxxd)+

(
∂gggn

∂xxxn

)T

λλλ n +

(
∂gggn+1

∂xxxn

)T

λλλ n+1 +

(
∂hhhn

∂xxxn

)T

µµµn +

(
∂hhhn+1

∂xxxn

)T

µµµn+1 = 0

∂L
∂vvvn

= 000 :
(

∂gggn

∂vvvn

)T

λλλ n +

(
∂gggn+1

∂vvvn

)T

λλλ n+1 +

(
∂hhhn

∂vvvn

)T

µµµn +

(
∂hhhn+1

∂vvvn

)T

µµµn+1 = 0

∂L
∂mmmn

= 000 : αmmmn +

(
∂gggn

∂mmmn

)T

λλλ n +

(
∂gggn+1

∂mmmn

)T

λλλ n+1 +

(
∂hhhn

∂mmmn

)T

µµµn +

(
∂hhhn+1

∂mmmn

)T

µµµn+1 = 0

∂L
∂λλλ n

= 000 : gggn = 0

∂L
∂ µµµn

= 000 : hhhn = 0

Note that these correspond to the time-discretisation of the adjoint equations associated to the continuous optimisation problem
in (2) [2].

3 Numerical Solution

The non-linear equations form a banded but coupled systems with unknowns zzzn = {xxxn,vvvn,mmmn,λλλ n,µµµn}, n = 1, . . . ,N. The solution
strongly depends on the initial iterates zzz0, which can be estimated by solving successive uncoupled systems where only zzzn

is unknown, but all other variables up to time tn−1 fixed. We present solutions with full Newton-Raphson and also resorting
using adapted conjugate gradient strategies [3] based on finding optimal directiosn for mmmn from the error in the third optimallity
condition. For linear systems, where all the terms in parenthesis in the optimality conditions are constant, a closed solution may
be found in terms of initial zzz1 and last unknowns zzzN .
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EXTENDED ABSTRACT 

1 Introduction 

Topology optimization has the ability to improve the dynamic performance of a flexible multibody system (FMBS) while 
reducing its weight. Recent years have witnessed the fast development of the dynamic topology optimization of a FMBS. 
However, previous works [1] mainly focused on the dynamic response topology optimization of a FMBS, that is, reducing the 
deformations, vibrations, and stresses of a FMBS. Some works [2] also tried to take the dynamic characteristics of a FMBS into 
consideration when doing the topology optimization, but only considered one flexible structure instead of a FMBS. Hence, in 
this work, dynamic characteristics topology optimization of a FMBS is studied by considering the eigenfrequency objectives or 
constraints. 

2 Dynamic model of a FMBS 

In order to obtain a convincing topology optimization result, an accurate dynamic model of the FMBS to be optimized should 
be established first. In this work, the absolute nodal coordinate formulation (ANCF) is used to describe the large deformation 
and large overall motion of a FMBS. As a non-incremental finite element method, ANCF has many merits such as constant mass 
matrix, simple (mostly linear) kinematic constraints, direct link to topology optimization models which also requires finite 
element discretization, and so on. 

The dynamic equations of a general FMBS described via ANCF can be expressed as 

 
( ) ( )

( )

T ,

, t

 + + =


=

 qMq F q Φ λ Q q q

Φ q 0
 (1) 

where M is the constant mass matrix of the system, q is the vector of generalized coordinates, λ  is the Lagrange multiplier 
vector, F is the nonlinear elastic force vector, and Q is the generalized external force vector. The second equation in Eq. (1) 
represents the kinematic constraints including driving constraints, and Φq denotes the partial derivative matrix of constraint 
equation with respect to the generalized coordinate vector. 

By linearizing Eq. (1) about the equilibrium state 0 0 0( , )t，q λ , one gets 

 ˆˆ ˆδ δ δ+ + =M y C y K y 0   (2) 

where ˆ  
=  
 

M 0
M

0 0
 , ˆ  

=  
 

C 0
C

0 0
 , 

T
ˆ  
=  
  

q

q

K Φ
K

Φ 0
 , = ∂ ∂ C Q q  , T( )= ∂ + − ∂qK F Φ λ Q q  , T T T[ ]δ δ δ=y q λ  . By 

substituting the solution e tγδ =y Z  into Eq. (2), the eigenvalue problem of a FMBS can be obtained as follows [3] 

 ( )2 ˆˆ ˆγ γ+ + =M C K Z 0  (3) 

where γ is the eigenvalue whose imaginary part represents eigenfrequency and Z is the corresponding eigenvector. 

3 Topology optimization for eigenfrequencies of a FMBS 

Topology optimization aims at placing given material within a prescribed design domain to achieve optimized performances. It 
can change the mass and stiffness matrices by optimizing the distribution of the material so as to control the eigenfrequencies of 
a FMBS as desired. For example, if one wants to maximize the first-order eigenfrequency of a FMBS, the topology optimization 
formulation can be mathematically expressed as follows 
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1

2
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maximize

ˆˆ ˆsubject to , 1, 2, ,
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ρ

ρ

ω

γ γ

ρ ρ

∈

+ + = =

− =

< ≤ ≤ =

ρ

M C K Z 0

ρ







  (4) 

where the objective function ω1 is the first-order eigenfrequency of a FMBS. Among the constraints, the first one is the complex 
eigenvalue problem with Nd denoting the number of degrees of freedom for the system. The second constraint is the equality 
volume constraint, where V(ρ) is the volume ratio of the flexible multibody system and Vspec is a specified volume fraction. ρe is 
the design variable [4], i.e., the density of the e-th finite element, ρmin is a small positive number and usually ρmin = 10-9. 

 
Figure 1: A two-link flexible manipulator 

   
Figure 2: A flexible folding-wing aircraft 

4 Case studies 

As shown in Figures 1 and 2, some numerical examples are presented to validate the accuracy of the dynamic model for modal 
analysis of a FMBS and to show the effectiveness of the topology optimization methodology for eigenfrequencies of a FMBS. 
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DYNAMIC ANALYSIS OF AN INTERNAL TURNING TOOL WITH ELASTIC FOUNDATION (WINKLER 

MODEL) 

1 Introduction 

A problem of the internal turning process is the appropriate fixation of the boring bar at the lathe’s tool holder. Conventional 

fixation generally does not guarantee a satisfactory static stiffness to this fixture and this is a factor of increased vibration. The 

results showed by [1] that if the Easy Fix bushing is used, it is possible to machine holes almost 30% longer than using a 

conventional bushing, due to its smaller mass, better distribution of the clamping force and geometry of the Easy Fix bushing as 

we can see in Figure 1. 

 

Figure 1: Clamping conditions to internal turning tool 

This paper focuses on the clamping properties influence on the dynamic properties of clamped boring bars. The boring bar is 

modeled as a cantilever Euler–Bernoulli beam and a three span configuration in a Winkler foundation, in this way, this theory is 

applied to derive the transcendental equation for a general case applicable to the system with span beam at an arbitrary location. 

Eigenvalue plots of the first five modes are presented along with their respective mode shapes. The corresponding natural 

frequency equations are given and obtained by numerical calculation. The theoretical calculations are validated and discussed. 

These results confirm that within reason, the theory matches the literature and have relatively approach with the experimental 

values. 

2 Materials and methods 

For the internal turning tests of this work, the tool holder was set at a CNC Romi Galaxy 10, Fanuc 21iT command, 7 CV of 

main power and maximum spindle speed of 6000 rpm. The vibration signal of the internal turning bar was captured with one 

piezoelectric accelerometer connected to a data acquisition board developed by Bruel & Kjaer with RT Pro Dynamic Signal 

Analysis software. The FRF's (Frequency Response Function) were obtained by impact tests (test tap). For this, an impact 

hammer and accelerometer were used. The frequency range of the vibration signals was from 0 to10000 Hz, 1Hz interval with 

the smallest possible resolution in the system used. The experiments evaluated overhangs higher than L/D = 3, since smaller 

ratios do not get relevant results for this research, as has also been stated by [2].  

The tool holder had a diameter of 16 mm and a total length (L) of 270 mm where L1 indicates the tool overhang, L2 the fixture 

length and L3 the tail of the tool which the corresponding ISO code of A16R SCLCR 09-R - Sandvik. The Easy Fix bushing 

made by steel had ISO code is: 132L-4016105-B – Sandvik.  

The clamp housing was analyzed with different overhangs (L/D) as follow: 3; 3.25; 3.5; 3.75; 4; 4.25; 4.5; 4.75 and 5. The 

manufacturer’s catalogues recommended a maximum L/D ratio for a conventional alloy steel cutting tool, equal to 4 [3]. 

However, it is an underestimation of the critical L/D ratio, as the dynamics of machine tool and clamping or the selection of 

cutting conditions and workpiece material also partly contribute to the dynamics of cutting process. Therefore, it was chosen a 

limit overhang of 5.  

Assuming a constant cross-section along the boring bar, neglecting the head, the dimensions from Figure 3 result in a cross-

sectional area (A) equal to 1.922.10-4 m2, moment of inertia (I) equal to 2.750.10-9 m4 and Young Modulus (E) equal to 200 GPa. 

As reported in Figure 2, impact tests were executed by hammering the tool tip in transverse direction (perpendicular to the insert 
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rake angle), since it is mostly responsible for the regenerative effect causing chatter during the cutting process. After that, the 

accelerometer transfers the signal to the computer (with the modal analysis software RT photon - Brüel & Kjær) and this signal 

is captured by the data acquisition module. Owing to geometrical dimensions in Table 1 of the clamping-boring bar structure 

with the corresponding cross sections, just transverse direction was measured during the impact test in different overhang 

configurations, also confirming the hypotheses outlined by [4].  

 

Figure 2. Setup for Modal Analysis experiment 

3 Results and discussion 

The beam, in Figure 3, occupies the interval 0<x< (L1+L2+L3). The part L2 is embedded in Winkler foundation of a uniform 

stiffness k. The rest of the beam moves freely. At x = 0 and x = (L1+L2+L3) the second and third derivatives of the 

displacement are zero, that is, we are dealing with free-free boundary conditions. The equation (1) represents the equation of 

motion of the beam: 

 
4 2

4 2
( ) 0

y y
EI A K x y

x t


 
  

 
       (1) 

where y = y(x, t) is the transverse displacement at the point x at time t. The coefficient K(x) is the stiffness of the foundation (at 

x) measured as force per unit length per unit displacement. K(x) may vary with x in an arbitrary way in general but in our 

calculations we are specifically interested in the cases where K(x) is piecewise constant. 

 

(a)                                                        (b)                                                        (c) 

Figure 3: (a) Proposed model for a beam partially supported on a Winkler foundation (mid-support), (b) mode shapes of the 

proposed model and (c) comparison between the numerical values and the experimental results of the internal turning tool with 

Easy Fix tool-holder. 

4 Conclusion 

It was possible to model a fixation of the tooling system by applying Euler Bernoulli beam model with Winkler Foundation. 

Furthermore, costly and time-consuming experiments could be replaced by even analytical modelling with manual calculations, 

which enables us to judge the influence of the geometrical dimensions, the material properties, the possible overhangs and the 

fixation dimensions of the tool-holder system. 
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EXTENDED ABSTRACT

1 Introduction

Beam elements play an important role in the simulation of many engineering problems, for example in the simulation of sliding
contacts such as aerial runways. One of the most important models in the non-linear analysis is the geometrically exact beam
formulation [1, 2]. The geometrically exact beam formulation allows arbitrarily large deformations with finite strains, while the
cross-section of the beam remains planar.
The orientation of the beam’s cross-section is mostly described using rotational variables. However, without additional ef-
fort, the discretization of the rotations with finite elements is not frame-indifferent [3]. Thus, we use a formulation based on
directors, three orthonormal vectors, to describe the orientation of the beam’s cross-section [4, 5, 6, 7]. As shown by Simo
[8] structure-preserving time integrators are of great advantage as non-preserving integrators may not be stable. Therefore, an
energy-momentum conserving time integrator is used.
For the simulation of sliding contact problems a smooth representation of the geometry over element boundaries is necessary
to achieve a structure-preserving model [9]. For this purpose the isogeometric analysis using non-uniform rational B-Splines
(NURBS) is well suited as NURBS of order higher than one are at least C1 continues over element boundaries.
We, therefore, implement NURBS into the director-based geometrically exact beam formulation [4]. This beam formulation is
then used for the simulation of an energy-conserving sliding contact of two beams. The contact condition is implemented using
a structure-preserving null-space matrix approach [9].

2 Constrained Geometrically Exact Beam Formulation

e1

e2

e3

d1
d2

d3

s

ϕϕϕ(t)

Figure 1: Configuration of a beam

The configuration of a beam is shown in Fig. 1. The position of any point of the beam can be described by

x(s, t,θ 1,θ 2) =ϕϕϕ(s, t)+θ α dα(s, t) , (1)

where s ∈ [s1,s2] (s1,s2 ∈ R) is referred to as the arc-length, ϕϕϕ ∈ R3 describes the reference curve of the beam and θ α ∈ R are
convective coordinates. In this connection, ϕϕϕ points to the centerline of the beam and θ α gives the position on the cross-section.
Three directors di ∈ R3 are used, where d1 and d2 span the cross-sectional area of the beam and d3 is defined by

d3(s, t) = d1(s, t)×d2(s, t) . (2)

The directors are mutually orthonormal for all t ∈ R. That is,

di(t) ·d j(t) = δi j , (3)

where δi j denotes the Kronecker delta. To enforce the orthonormality of the directors constraints are used

λλλ : [di⊗di− I] = λλλ : ΦΦΦ = 0 , (4)

where the constraints ΦΦΦ are given by
ΦΦΦ = di⊗di− I . (5)

In case of Lagrange shape function the constraints are usually strongly enforced at the nodes [4, 6]. However, as the shape
functions are not interpolatory in case of discretization with NURBS the constraints must be enforced in a weak sense, leading
to the corresponding contribution to the weak form

Gcon(di,λλλ ,δdi,δλλλ ) =
∫ L

0
λλλ : Grad(ΦΦΦ) ·δdi +δλλλ : ΦΦΦds . (6)

135



3 Sliding Contact

A sketch of the sliding of a beam A along a beam B is shown in Fig. 1. The contact condition can be modeled using a penalty

t0

A

B

t1

A

B

Figure 2: Sliding contact of two beams at times t0 and t1

approach, Lagrange multipliers, or the combination of both, an augmented Lagrangian approach. However, these methods have
significant disadvantages, as they are either unstable or increase the complexity and size of the numerical system [10]. Hence,
here the null space matrix approach, also reported as the master-slave approach, is applied. The null space matrix relates the
coordinates of both beams without additional variables and does not increase the complexity of the underlying DAE. Additionally
to the smooth interpolation with NURBS, we use a mid-point evaluation of the contact constraints in combination with an energy-
momentum conserving time integration scheme resulting in an energy-conserving contact algorithm.
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[10] G. Jelenić, M. Crisfield. Dynamic analysis of 3D beams with joints in presence of large rotations, Computer methods in
applied mechanics and enigneering, 190: 4195-4230, 2011

136



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Coupled Multibody Model Of Industrial Robot With Milling Simulator For Trajectory
Compensation

Valentin Dambly1, Hoai Nam Huynh2, Olivier Verlinden1, Édouard Rivière-Lorphèvre1

1 Faculty of Engineering
University of Mons

Place du parc 20 , 7000 Mons, Belgium
[valentin.dambly, olivier.verlinden, edouard.rivierelorphevre]@umons.ac.be

2 Department of Mechanical Engineering
University of British Columbia

BC V6T 1Z4, Vancouver, Canada
hoainam.huynh@ubc.ca

EXTENDED ABSTRACT

1 Introduction

Robotic machining is a fast-growing technology in the field of mechanical manufacturing. Indeed, it is generally accepted that
for the same working space, a fully equipped robotic machining cell can cost 30 to 50% less than a conventional machine tool.
Furthermore, robotic machining enables an interesting agility in the cutter motion to deal with complex workpieces geometry.
However, inaccuracies resulting either from vibrations or deflections occur while the robot is subjected to cutting forces. As an
order of magnitude, the tool-tip deviation in 6060 Aluminium is typically 200 µm and can rise up to 300 µm.

The causes of these issues are numerous and have been identified then classified according to their nature [1]. Among the
deviations sources, a major contribution appears to be the flexibility of the robot. It has been investigated and appears to be
caused by the robot articulations in a proportion of 80% while the remaining flexibility issues from the structural elasticity of the
links [2].

In order to improve the accuracy of robotic machining operations, several approaches have been carried out such as the study of
stable cutting conditions and the online/offline compensation of the tool trajectory [1]. Within the frame of industry 4.0 and the
concept of virtual twin, offline models can be developed in order to predict instabilities and compensate deviations. However, for
the offline compensation, it is necessary to model both aspects of the operation, on the one hand the model of the cutting machine,
being an industrial robot in robotic machining, and on the other hand, the machining model including the resulting geometry of
the workpiece.

The articular flexibility is introduced in the multibody model by adding rotational degrees of freedom at the articulations (along
transmission and orthogonal directions). Several approaches are developed in the literature depending on the parameters chosen
for the flexibility modelling [1]. These approaches propose to determine an equivalent torsional stiffness value at the articulation
and to use this value to calculate the corresponding deflection of the tool centre point [4, 5]. It has been shown that the articular
flexibility modelling is improved by adding a damping contribution [2]. An illustration of the articular flexibility is given in the
figure 1a. With the introduction of damping, the direct compensation of the position is no longer sufficient.

A robot performing a machining operation can be considered as a multibody chain with perturbation forces applied on the tool
centre point (TCP). In order to be able to simulate 5-axis operations, it is necessary to couple a machining force module that
can compute these forces for such TCP motion. Concerning the modelling of machining operation, several approaches exist
depending on the motive of the simulation [3]. The most appropriate candidates for time-based simulation where the cutting
forces are needed at each time-step are the voxel and the dexel approaches [3]. Models coupled with voxel method have been
developed for model-based compensation [5]. However, the complexity of voxel model is O(n3) against O(n2) for dexel. The
proposed machining force module is then based on dexel representation technique.

2 Applied Methods

A coupled model is proposed with the multibody model of the robot subjected to machining forces, computed by an in-house 3D
dexel-based machining module. The latter must then be computed at each time step along the tool path. The multibody model
includes the flexibility induced by the structure and the articulations [2].

The multibody system including the additional degrees of freedom consists of an under-actuated system subjected to perturbation
forces. Instead of acting in the control variables space, the compensation will focus on the operational space variables. In order
to compensate the deviations, a solution is proposed where the trajectory in the operational space is discretized in nodes with a
compensation applied on them. The algorithm given in figure 1b aims to detect and add nodes at critical locations of the path and
reposition them to reduce the deviation.

The replacement of the trajectory nodes is improved with an optimisation layer. The design variables are the positions and
velocities of successive nodes. The optimisation problem is given in the following equation:

min
pni ,vni ,pni+1 ,vni+1

N

∑
k=0

‖pTCP − pt‖ · γk (1)

where the parameters are successive nodes (ni,ni+1) positions and velocities, pTCP is the tool centre point position, pt the ideal
path and γk is a weighting factor equal to 1 while machining and 0 else where. As a proof of concept, the node replacement
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Figure 1: (a) : Representation of the multibody modelling of a Stäubli TX200 robot dedicated to machining. For readabil-
ity reasons, the articular flexibility is only explicitly shown for the third joint. (b) : Node placement algorithm for trajectory
compensation in the operational space.

with optimisation layer in the operation has been carried out for the simplified model represented in figure 2a. The results of this
approach are given in figure 2b, where the TCP deviation is cancelled following the repositioning performed by the algorithm
and the optimisation layer focused on the entrance deviation compensation.
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Figure 2: (a) : Simplified system, consisting of tool attached, through spring-damper pairs, to a body moving along y and coupled
with the dexel modelled workpiece. (b) : Comparison of deviations in the normal directions at the entrance of the workpiece
depending on the input trajectories. Three trajectories are represented : the initial (unmodified) one, the one resulting from the
node replacement algorithm 1b and the one after optimisation process.
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EXTENDED ABSTRACT

For the geometrically linear behavior of an elastic body, the finite element method defines a discretized energy of deformation

V =
1
2

uT K u (1)

where K is the constant stiffness matrix and u is an array of small nodal translations and rotations with respect to a global,
inertial frame. For geometrically non-linear problems, like those encountered in flexible multibody systems [1, 2], the treatment
of large amplitude motions implies that the nodal variables of a finite element model are finite motions, namely finite translations
x(t)∈R3 and finite rotations R(t)∈ SO(3), both expressed with respect to a global, inertial frame. A common strategy in flexible
multibody systems is to extend eq. (1) to large amplitude motions by arguing that, when expressed with respect to an appropriate
frame, displacements remain small. To that end, the discretized energy of deformation must be expressible as

V =
1
2

ET K E

where K is the stiffness matrix of the linear case in eq. (1) and E is now an array of appropriate 6-dimensional deformation
measures, whose definition involves essentially two steps [3, 4]:

1. The definition, from the nodal motions, of relative motions that are objective, i.e. that are not affected by rigid-body
motions.

2. The extraction, from the objective relative motions, of deformation measures that are tensorial, i.e. that leave the energy
of deformation unaffected under a change of reference.

In the floating frame of reference formulation, the definition of nodal deformation measures is classically done by stacking the
translational part of the relative motion and rotation parameters of the rotational part:

Fe,i =

[
xe,i

p(Re,i)

]
=

[
RT

r,iR
T
F(xi− xF)−RT

r,ixr,i

p(RT
r,iR

T
F Ri)

]
, for each node i, (2)

where p is a parameterization of rotation and

•
(
xi(t), Ri(t)

)
are the nodal coordinates in the current configuration resolved in the global, inertial frame,

•
(
xF(t), RF(t)

)
are the coordinates of the floating frame of reference resolved in the global, inertial frame,

•
(
xr,i, Rr,i

)
are the nodal coordinates of the undeformed configuration resolved in the floating frame,

•
(
xe,i(t), Re,i(t)

)
are the nodal coordinates of a relative motion resolved in the floating reference configuration.

While being objective, the classical deformation measures in eq. (2) are not tensorial. Their lack of tensoriality is essentially due
to the fact that they do not include the available information of the change in the orientation of the local material fibers when
evaluating the translational part of the deformation. Indeed, this information suggests that translational deformation is partly due
to the change in orientation rather than due to a pure effect of translation. In this work, we show that

E i =

[
ε i
κ i

]
=

[
T−T

p (κi)xe,i
p(Re,i)

]
=

[
T−T

p (κi) 0
0 I

]
Fe,i, for each node i, (3)

are objective, tensorial deformation measures, where T p is the tangent operator associated with parametrization p. They exhibit
a localized, non-linear coupling between the translational and rotation parts. While such deformation measures appear naturally
from the algebraic manipulations when kinematics is treated in terms of motions [5], namely coupled translations and rotations,
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they can be constructed geometrically as the parameters of a fictitious constant-deformation path between the floating reference
configuration and the current configuration.

In numerical applications, we show that these deformation measures are able to capture accurately complex effects of deforma-
tion that are usually claimed to be outside of the scope of the floating frame of reference formulation. For instance, the centrifugal
stiffening effect that characterizes the dynamic problem described by Wu and Haug [6] can be captured accurately by the tensorial
deformation measures, whereas the classical deformation measures exhibit a response that is too soft, see Fig. 1

(a) Classical deformation measures. (b) Tensorial deformation measures.

Figure 1: Time history of the transverse tip displacement for the rotating beam example by Wu and Haug [6].
Reference solution from a non-linear finite element analysis [5] (−), floating frame of reference solution (∗−).

The simplicity of relationship between the classical deformation measures and the proposed tensorial deformation measures in
eq. (3) suggests that existing implementations could be modified easily.
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EXTENDED ABSTRACT

1 Introduction

From the onset of the 21st century, the focus of the research in multibody dynamics has shifted to modeling of real systems. Such
systems are typically characterized by non-linear phenomenon like friction, imperfections in the joints including lubrication and
clearances, and systems with discontinuous velocity trajectories, or in other words, hybrid-dynamical systems. Joint friction
occurs in all mechanical systems and can possibly have a substantial impact on the dynamics, optimal control, wear, and con-
sequently the operational life of the system. Optimization of such systems is a novel area of research and the methodologies of
direct and adjoint sensitivity analysis are the most prominent gradient-based optimization techniques employed for this purpose.
Time-based sensitivities are relatively cheaper to compute through direct and adjoint methods as compared to other numerical
techniques like finite differences for the same accuracy [1]. Before any of these studies can be conducted, a proper choice of
the multibody formulation is necessary. Although Lagrangian formulations are comparatively simple, they contain redundant
states (Lagrange multipliers) and require DAE integrators for computation of dynamics and sensitivities. Moreover, Lagrangian
formulations are not well suited to handle redundant constraints and singularities. Both of these limitations can be addressed by
using the modified Lagrangian formulation, also known as the penalty formulation, which was introduced by Bayo et al. in 1988
[2].

The contribution of this article is in the development of the equations of motion and the methodology of direct sensitivity analysis
of multibody systems with joint friction using the penalty formulation. Friction in the system has been represented using the
Brown and McPhee friction model [3]. A case study has been conducted on a spatial mechanism and the results of dynamics
and sensitivity analysis have been presented. Results of the penalty formulation have also been compared with those obtained
through the index-1 Lagrangian formulation.

2 Penalty formulation for multibody systems with joint friction

Bayo et al. [2] modified the Lagrangian formulation based on the Hamiltonian description of dynamics, but instead of appending
the constraints ΦΦΦ to the formulation, the authors incorporated them in the formulation itself using a penalty matrix ααα . This
approach leads to a system of n ordinary differential equations (ODEs) as opposed to the n+m differential algebraic equations
(DAEs) of the classical Lagrangian formulations. The equations of motion can be expressed in a compact ODE form as follows

M̄q̈ = Q̄ (1)

where

M̄ = M+ΦΦΦT
qααα ΦΦΦq (2)

Q̄ = Q+QA f∗−ΦΦΦT
qααα
(
Φ̇ΦΦqq̇+ Φ̇ΦΦt +2ξ ωΦ̇ΦΦ+ω2 ΦΦΦ

)
(3)

In penalty formulation, the Lagrange multipliers are approximated with the following term

λλλ ∗ = ααα
(
Φ̈ΦΦ+2ξ ωΦ̇ΦΦ+ω2 ΦΦΦ

)
(4)

Since, the exact Lagrange multipliers do not exist in penalty formulation, the friction force vector QA f∗ is calculated based on the
approximate Lagrange multipliers given in Equation (4). The term that depends on the Lagrange multipliers in QA f∗ is actually
the magnitude of the joint reaction force F∗n . Based on Haug (2018) [4], the equation for the joint reaction force in the joint-fixed
reference frame for a body i using approximate Lagrange multipliers can be written as

F∗n =
∣∣∣F′′ki

∣∣∣=
∣∣∣−CkT

i AT
i ΦΦΦkT

ri
λλλ ∗k
∣∣∣ (5)

In penalty formulation, neither of the constraint equations nor their derivatives are exactly satisfied, however, reasonable accu-
racy can be achieved through a right choice of penalty factors, natural frequency and damping ratio. In this analysis, we have
considered α = 1000, ξ = 1 and ω = 10 rad/s.

142



3 Direct sensitivity analysis for multibody systems with joint friction

The direct differentiation method for the sensitivity analysis using the penalty formulation was first presented by Pagalday (1997)
[5]. To obtain the expression for the model sensitivities, Equation (1) is differentiated with respect to the model parameters.

dM̄
dρk

q̈+M̄
dq̈
dρk

=
dQ̄
dρk

, k = 1,2, . . . , p (6)

The derivatives can be expanded and rearranged into p Tangent Linear Models (TLMs) as follows

M̄q̈ρρρ + C̄q̇ρρρ +(K̄+M̄qq̈)qρρρ +LA f∗λλλ ∗ρρρ = Q̄ρρρ −M̄ρρρ q̈ (7)

The term λλλ ∗ρρρ represents the sensitivities of the approximate Lagrange multipliers with respect to the design parameters ρρρ . These
can be expressed in terms of the sensitivities of the generalized coordinates and their derivatives. This substitution yields the final
form of the Tangent Linear Model as shown below

(M̄+αααLA f∗ΦΦΦq)q̈ρρρ +(C̄+αααLA f∗(Φ̈ΦΦq̇ +2ξ ωΦΦΦq))q̇ρρρ +(K̄+M̄qq̈+αααLA f∗(Φ̈ΦΦq +2ξ ωΦ̇ΦΦq +ω2ΦΦΦq))qρρρ

= Q̄ρρρ −M̄ρρρ q̈−αααLA f∗(Φ̈ΦΦρρρ +2ξ ωΦ̇ΦΦρρρ +ω2ΦΦΦρρρ)
(8)

4 Results and conclusion

A case study was conducted on a spatial slider crank mechanism with joint friction to validate the proposed methodology. This
mechanism was adapted from Haug (1989) [6] and the schematic of this system is shown in Figure 1(a). For comparison, the
dynamics and sensitivities of the connecting rod with respect to the crank length have been plotted in Figures 1(b) and 1(c)
respectively using the index-1 Lagrangian and penalty formulations. The computation using the penalty formulation was found
to be 26% faster than the index-1 formulation with the maximum RMSE error in sensitivities of 0.5% for a simulation time of 1
second.

(a) (b) (c)

Figure 1: (a) Mechanism schematic. (b) Connecting rod position history. (c) Sensitivity of rod position to crank length.
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EXTENDED ABSTRACT

1 Introduction

Local stability is one of the most critical properties of a dynamical state. Engineers heavily exploit this concept. Nevertheless,
scientists dealing with dynamical systems are aware that, despite its local stability, a system might diverge from its state if
subject to a perturbation sufficient to make it cross the boundary of its basin of attraction (BOA). However, the computation of a
system’s BOAs is computationally very demanding. A few methods for the identification of BOAs of dynamical systems exist [1].
Analytical methods are generally based on Lyapunov functions. However, they are not a feasible option for the majority of real
applications. The cell mapping method is probably the most efficient numerical technique for BOA estimation [2]. Experimental
methods are almost inexistent, except for a few exceptions [3].

The objective of this study is to develop an algorithm for the robustness assessment of equilibrium points. The procedure reduces
the computational cost for global stability analysis by identifying the local integrity measure (LIM) [1] only, overlooking fractal
and intermingled portions of the BOA, which are hard to identify and practically less relevant.

2 Methodology

The algorithm is based on a simple framework. Considering a predefined region of the phase space, initially, the maximal value
of the LIM is calculated, being equal to the minimal distance between the equilibrium point of interest and the boundary of the
region of the phase space considered. Then, a trajectory of the system in the phase space is computed. If the trajectory does
not converge to the desired solution, the LIM is estimated as the minimal distance between the equilibrium point of interest
and any point of the non-convergent trajectory. The new estimated value of the LIM (an overestimate of the real LIM value)
defines a hypersphere in the phase space denominated hypersphere of convergence, limiting the region of interest. If a simulation
converges to the desired solution, then the LIM is not reduced in that iteration. Initial conditions of each simulation are chosen
as the farthest point from any other already tracked point within the hypersphere of convergence.

In order to automatically classify the computed trajectories, the phase space is divided into cells. A trajectory is classified as
converging or non-converging to the desired solution by analyzing the cells in which points of the trajectory lie. To the reduce
computational time, if a trajectory reaches a cell already tracked by a previous trajectory, the simulation is interrupted; all cells
containing points of the trajectory are classified according to the reached and already tracked cell. A graphical explanation of the
classification procedure adopted is illustrated in Fig. 1.

(1)

(2)

(3)

(4)

(5)

ሶ𝑥

𝑥

Figure 1: Illustrative examples of trajectory classification. (1) Converging to a known equilibrium; (2) leaving the considered
phase space region; (3) converging to an unknown equilibrium; (4) converging to an unknown periodic solution; (5) converging
to an already tracked cell.
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3 Results

We implemented the algorithm on systems of various dimensions (up to dimension 8); the analysis illustrated that the algorithm
could rapidly and efficiently estimate the LIM value in all cases studied. In particular, the first few iterations already provided a
relatively accurate estimate of the real LIM value. The majority of the subsequent simulations converged to the equilibrium of
interest, except few ones, which improved the initial estimate of the LIM. Figure 2a represents the trend of the LIM estimate for
the case of a Duffing-van der Pol oscillator with an attached tuned mass damper (4-dimensional system). The black line in Fig.
2a follows the described path. Light blue lines represent the LIM trend for other repetitions of the algorithm. All curves have
a similar tendency. The system under study presents a stable equilibrium point (red cross in Fig. 2b) coexisting with a stable
periodic solution (black line in Fig. 2b) for the considered parameter values. We remark that, in Fig. 2b, tracked points are
projected on a section of the phase space, which makes it appear that red dots are within the hypersphere of convergence (green
dashed line) while they are not.

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Figure 2: (a) LIM estimated value; (b) projection of the points tracked during the computation; blue and red points: converging
and non-converging points, respectively, dashed green line: section of the hypersphere of convergence.

4 Conclusions

In this study, a new algorithm for estimating the robustness of a stable equilibrium was developed. The algorithm utilizes an
approach different from existing numerical methods for global analysis. It does not aim at studying the whole basin of attraction
of a solution; instead, it directly tries to estimate the local integrity measure (LIM). From an engineering point of view, this
quantity has obvious relevance for the safety of a dynamical system. The obtained results suggest that the proposed algorithm is
a viable option for the robustness assessment of an equilibrium point. In particular, thanks to its quickness, it has the potentiality
to be utilized in industrial environments, where rapid solutions are generally pursued. Future research developments should aim
to make the algorithm utilizable for the robustness estimation of other kinds of solutions, such as periodic motions.
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EXTENDED ABSTRACT

1 Introduction

Optimization of multibody or robotic systems always poses challenging problems. Methods in this broad field might concern
finding an optimal finite set of time-independent design variables or whole time-domain functions in optimal control tasks. The
difficulty stems from the fact that the minimized cost function is implicitly interconnected with the dynamics model. When a
gradient-based optimization method is used, the model, in most cases, being a differential-algebraic equation (DAE), makes the
gradient computation a cumbersome task.

A great variety of methods is utilized to overcome the problem, e.g., direct differentiation methods or adjoint methods [1]. Our
research concentrates on implementing the adjoint method for optimal control of multibody systems in the Hamiltonian setting
as we recognize the advantages of using such a set of tools [2]. To be precise, a multibody system is modelled by index-1 DAE
in the form 




p = M(q) q̇− [ΦΦΦq (q)]T σσσ (1a)

ṗ = f(q, q̇,u)−
[
Φ̇ΦΦq (q, q̇)

]T σσσ (1b)
ΦΦΦ(q) q̇ = 0 (1c)
q(0) = q0, p(0) = p0, (1d)

where q, p ∈ Rn are dependent coordinates and articulated momenta, respectively, and σσσ ∈ Rm is a Lagrange multiplier, which
might be interpreted as constraint force impulse since λλλ = σ̇σσ , where λλλ is a constraint force. Moreover, u(t) is the control function,
M(q) is the mass matrix and f(q, q̇,u) represents forces acting on the system. The model incorporates position constraints
ΦΦΦ(q) = 0 ∈ Rm differentiated to the velocity constraints level.

Considering σσσ variable, we conclude that some of the vector’s elements might become excessively large as the simulation
proceeds. Essentially, that is the case for constraint forces whose sign remains unchanged, and σσσ , being an integral of the λλλ ,
continually grows. Consequently, after some time, changes of other elements become insignificant, and the direction of the σσσ
vector might be imprecise. This inaccuracy propagates through the dynamic model as well as the adjoint equations. The issue has
a significant impact on finding ṗ from (1b) because the summand

[
Φ̇ΦΦq (q, q̇)

]T σσσ might eventually overweight forces f(q, q̇,u)
due to the discussed integral growth.

Herein, we propose an approach to limit the values of the σσσ elements by resetting them at certain events without changing the
physics of the phenomena. Unfortunately, this act of resetting introduces discontinuities in the model and renders the task more
demanding. As these discontinuity events depend primarily on the implementation, we call the discontinuities artificial in contrast
to these of other origins, e.g., impacts or unilateral constraints.

In this work, we follow the framework proposed in [3] to cope with discontinuities both in the forward dynamic task and the solu-
tion of the adjoint equations, which alone are an active research area [3, 4]. We simplify the optimal control task by parametrizing
the control function u(b, t), where b ∈ Rk is a vector of time-independent parameters. Thanks to this assumption, a finite set
of variables must be optimized instead of a time function. Ultimately, the optimization methods require a gradient of the cost
function J (b), which we model as follows

J (b) =
∫ T

0
h(q, q̇,u, t)dt + S (q, q̇)|T , (2)

where the integrand h(q, q̇,u, t) and the end-time cost function S (q, q̇) are designed so as to fulfill requirements imposed on the
control signal.

2 Resetting the σσσ and discontinuities in the model

The so-called transition condition
g
(

q̇−, ṗ−,q−,p−,σσσ−,u, ti
)
= 0 (3)

defines time ti at which the resetting event takes place. At time ti, the system transforms from Si
i−1 mode to Si+1

i ,which is
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described by the transition function T(·). This function relates values a− just before the event with their conterparts a+ in the
new mode. If we change σσσ by ∆σσσ to lower its value, the jump conditions, under the assumption of coordinates q and forces
Q = M(q) q̈+Ṁ(q) q̇− [ΦΦΦq (q)]T λλλ to be invariant, are as follows

T
(

q̇+, ṗ+
,q+,p+,σσσ+, q̇−, ṗ−,q−,p−,σσσ−,u, ti

)
= 0↔





q+−q− = 0, q̇+− q̇− = 0,

p+−p−−ΦΦΦT
q ∆σσσ = 0, ṗ+− ṗ−− Φ̇ΦΦT

q ∆σσσ = 0,
σσσ+−σσσ−−∆σσσ = 0.

(4)

Analogously, we argue in the full paper that the jump conditions might be derived for the adjoint variables.

The introduced approach is applied to optimal control of dual-arm manipulation. The resulting motion of the robotic arms (shown
in Fig. 1) produces significant differences in values of summands (1b). In Fig. 2, a comparison of solutions with and without
the σσσ -resetting procedure is presented. In this test case, the σσσ -resetting routine dimmed the

[
Φ̇ΦΦq (q, q̇)

]T σσσ by the order of
magnitude.

t = 0 s

t = 0.11 s

t = 0.22 s

t = 0.33 s

t = 0.44 s

t = 0.56 s

t = 0.67 s

t = 0.78 s

t = 0.89 s

t = 1 s

Figure 1: Motion of the bi-manual task. Figure 2: Results of σσσ resetting introduction.

3 Conclusions

This paper presents a method to overcome the problem of the unexpected growth in the values of σσσ vector, which may deteriorate
the quality of the forward dynamics solutions and may adversely influence the results produced by the adjoint method. The
proposed approach extends the framework shown in [1, 2] by devising the adjoint method, which is adapted to deal with artificial
discontinuities.

We consider this paper as an intermediate step in deriving a more general method, which would directly operate on a time function
and support discontinuities stemming from various physical effects, e.g. joint friction forces or impacts. These two features are
of current interest for the authors.
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1 Introduction 

In classic mechanics, governing equations of a system are derived on the basis of, for example, the mass and momentum 

conservation laws, and principle laws in thermodynamics. Developing such constitutive models to show mechanisms in real-life 

scenarios requires a good knowledge of the system and its environment. The complexity of machines and multi-physics 

phenomena involved, environmental conditions, and the lack of information on how system parameters vary over time hinder 

the accurate construction of efficient physics-based models. In data science, there is a great possibility to integrate statistical 

learning concepts with classical approaches in applied mechanics and mathematics to discover sophisticated and accurate models 

of complex dynamical systems directly from data [1]. Such data-driven based models have been obtained using Pareto front, 

sparsity, time-series (TS) data, equation-free modelling, nonlinear regression, empirical dynamic modelling, modelling emergent 

behavior, and automated inference of dynamics [1-3]. Data-based model discovery approaches have demonstrated a great 

capability in fluid mechanics, material science, and dynamical systems to generate parsimonious models [4]. On top of that, the 

value of system parameters used in the theoretical models of multibody systems plays a very important role in accurately 

predicting the response of a physical system [5]. Knowing the dynamic equations of a system, linear regression methods are 

employed to estimate such system parameters. However, in the case that the developed physics-based model does not take into 

account either the physics of the problem fully or the environment of a given system due to the lack of knowledge, the system 

parameters estimated from such biased mathematical models can not represent the system accurately. Moreover, in the era of the 

fourth industrial revolution (Industry 4.0) that is the industry trend and activity towards automation and data exchange in the 

industry [6], huge amounts of data are available due to the affordable cost of sensors and the universal industrial trend towards 

smart machines, factories and systems. Thus, the present study aims at developing a data-driven method to identify multibody 

systems. The governing equations of multibody system dynamics are discovered directly from TS datasets of a given mechanism 

using an evolutionary symbolic sparse regression approach without prior knowledge of the respective machine. For the discovery 

of physical models, a dictionary of basis functions is used. To reduce the risk that this dictionary is not covering all functionality 

required to unravel hidden physical laws, an exploration-exploitation strategy is followed to evolutionarily build and validate the 

function dictionaries. A symbolic ridge regression method based on genetic programming is used to conduct this process. 

Illustrative examples are finally considered to demonstrate the capability of the presented approach. 

 
Fig. 1. The workflow of the system identification (SI) approach.  
 
2 Mathematical modeling  

The ridge regression approach is employed to discover physics-based models directly from TS data while a general form of 

nonlinear and linear governing equations is considered and there are no restrictions on the functional form of candidate terms, 

e.g. trigonometric functions, polynomial nonlinearities, etc. In order to avoid overfitting symbolic regression methods, 

parsimonious models are selected that balance the model’s accuracy and complexity [2]. For the discovery of physical models, 

a dictionary of basis functions is constructed by setting up multiple dictionaries and comparing their ability to discover physical 

laws. This strategy is embedded in an exploration-exploitation algorithm to evolutionarily build and validate the dictionaries, in 

which a symbolic genetic algorithm programming is developed to generate symbolic functions randomly and evolutionarily 

promote mathematical terms that represents the data relatively better than others available in the population. Both genetic 

algorithm mutation and crossover are employed while the fitness is defined according to the mean square error calculated based 

on data obtained from each candidate of the governing equations in the population at each generation and the input data. On top 

of that, after a few generations, a term promoting the model sparsity is multiplied by the previous fitness function as well. The 

workflow of the model developed in this study is represented in Fig. 1. Three illustrative examples are also considered and the 

respective discovered models are compared to reference theoretical formulations for validation purposes. The sensitivity of the 

developed identification system is assessed and errors associated with each case study are reported. 

 

3 Results and discussion 

The models distilled by the suggested method, corresponding to the TS data obtained theoretically from the mechanisms listed 

in Table 1, are listed while the associated error percentage is reported by comparing each theoretical reference and its respective 

discovered model. The evolutionary symbolic regression method used in this study works subjected to the properties listed in 
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Table 2. The constant c in the terminal set can get a random value in the range of [-10, 10] that is adjustable. The results show 

that the suggested algorithm gives the possibility to reveal both the structure of constitutive equations and the parameter 

magnitudes of multibody systems. The developed methodology automatically builds the proper library using genetic 

programming. However, one has to manually add functions that are likely to appear in the system’s governing equation once 

using just regression methods, which requires human involvement with prior knowledge of a given system. Moreover, the 

robustness of the approach is evaluated by adding Gaussian white noise with zero mean to the TS data associated with the case 

study (ii) with different levels of signal-to-noise ratio (SNR), i.e. 20 and 30 db. It is observed that the maximum increase of the 

error percentage is by 8.23 % and occurs when the noisy data with SNR =20 db is used. 
 

Table 1. Demonstrative examples considered in this study to show the efficiency of the presented SI algorithm. 
Mechanism i: A spring-mass system with Stribeck friction 

 

Stribeck friction model: 𝜇(�̇�) = {
(𝑐𝑑 + (𝑐𝑓 − 𝑐𝑑) exp(−𝜉(|�̇�| − 𝑣0)))sgn(�̇�)      |�̇�| > 𝑣0

(𝑐𝑓 −
𝑐𝑓

𝑣0
2
(|�̇�| − 𝑣0)

2) sgn(�̇�)                                  |�̇�| ≤ 𝑣0
 

Characteristics: 𝑚 = 10 kg, 𝑘 = 2000 Nm−1, 𝐹(𝑡) = 200 sin(2𝑡)  N, 𝑐𝑓 = 0.15, 𝑐𝑑 = 0.065, 

𝑔=9.81 m/s2, 𝑣0 = 0.1 m/s 𝜉 = −3 . Initial values: z|𝑡=0 = 0 

Discovered equations using the state-space representation with state variables: 𝐳𝑇 = (𝑥 �̇�) = (𝑧1 𝑧2)      Error (%) 

�̇� =

{
 
 

 
 (

1.0000𝑧2
19.9983 𝑠𝑖𝑛(𝑡 + 𝑡) − 199.9831𝑧1 − 0.6389sgn(𝑧2) − 1.1241sgn(𝑧2) exp(−3.0010|𝑧2|)

)         |𝑧2| > 𝑣0

(
1.0000𝑧2

19.9925sin(2.0000𝑡) − 199.9253𝑧1 + 146.7341𝑧2
2sgn(𝑧2) − 29.3915𝑧2

)                                     |𝑧2| ≤ 𝑣0

 

 

 

0.45 

Mechanism ii: A two-degree-of-freedom spring-mass system 

 

Characteristics: m1=10 kg, m2=5 kg, k1=200 NM-1, k2=300 NM-1, k3=200 NM-1, 𝜔1=2 rad/s, 

𝜔2=5 rad/s, 𝑓1(𝑡) = 200 sin𝜔1𝑡  N, 𝑓2(𝑡) = 100 sin(𝜔2𝑡 + 𝛼1)  N, 𝛼1 =
𝜋

3
 𝑟𝑎𝑑. Initial values: 

z|𝑡=0 = 0 

  Discovered equations using the state-space representation with state variables: 𝐳𝑇 = (𝑥1 𝑥2 �̇�1 �̇�2) = (𝑧1 𝑧2 𝑧3 𝑧4)   Error (%) 

�̇� = (

1.0000𝑧3
1.0000𝑧4

−20.0002 sin(−2.0003𝑡) + 30.0308𝑧2 − 49.9949𝑧1
−19.9945 sin(−5.0074𝑡 − 1.0361) + 59.3456𝑧1 − 99.9539𝑧2

) 

 

  2.46 

  Mechanism iii: Crank-slider mechanism 

 

Characteristics: ‖𝑨𝑩⃗⃗⃗⃗⃗⃗ ‖ = 0.1 m, ‖𝑩𝑪⃗⃗⃗⃗⃗⃗ ‖ = 0.5 m, 𝜔 = 2 rad/s. Initial value: z|𝑡=0 = ‖𝑨𝑩⃗⃗⃗⃗⃗⃗ ‖ +

‖𝑩𝑪⃗⃗⃗⃗⃗⃗ ‖ 

Discovered equations with state variables: �̇�1 = �̇�  Error (%) 

�̇�1 = −0.2000 sin(2.0000𝑡) − 0.2004
sin(2.0021𝑡) sin(1.9904𝑡 + 1.5609)

√24.8584∗ + sin(−2.0049𝑡) sin(2.0001𝑡)
 

 

*24.8584 = 5.0013 × 4.9704 

2.03 

 
Table 2. Evolutionary parameters used for discovering system equations 

Parameter  Value 

Population size (i) 600, (ii) 600, and (iii) 800 

Crossover and mutation rates 0.8 and 0.2, respectively 

Number of generations  (i) 19, (ii) 50, and (iii) 73 

Function and terminal sets {+,×,÷, sin,√ , | |, exp, sgn}, {𝑡, 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑐, 1} 

 

4 Conclusion  

An evolutionary symbolic regression method was presented for the system identification of multibody system dynamics. The 

function candidates were constructed randomly based on a function set and terminal set defined in the genetic programming in 

the first place and the governing equations were obtained using the ridge regression approach. The fitness in genetic programming 

was evaluated based on mean square error and the equation complexity. The procedure was used to investigate three case studies, 

which subsequently demonstrated a good efficiency and capability to identify not only the system parameters but also the 

governing equations of multibody systems. Being an ongoing research study, the future direction of this study can be to extend 

the procedure to discover parsimonious equations of a system from experimentally acquired data.   
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EXTENDED ABSTRACT

1 Background and problem statement

Identification of unknown multibody system dynamics from given experimental or numerical data is of paramount importance
for accurate future state predictions or application of advanced modelbased control strategies. Traditionally, robot dynamics
models are identified by exploiting the fact that the equations of motion might be rewritten to a form which is linearly dependent
on the standard set of unknown parameters [1]. Subsequently, the leastsquares (regression) approach is used to find the values
by minimizing the error between the predicted and measured output vector. On the other hand, much advancements have been
done in the field of sparse identification of nonlinear system dynamics [2],[3]. The authors use there sparse regression to discover
equations of motion and create parsimonious models with the fewest terms out of the candidates from the predefined library
of functions. The approach tends to prevent overfitting. The sparsity is achieved by using the leastsquares regression with 𝐿1

regularization term that penalizes sparsity of the generated model and exploits usually LASSO to find the solutions. An interesting
alternative to the LASSO framework seems to be the SINDy method [2], which iteratively executes the leastsquares algorithm
and then threshold all coefficients that are smaller than some userdefined regularization term. The SINDy (sparse identification
of nonlinear dynamical systems) approach has been successfully extended in a number of ways to include e.g.: inputs and control,
incorporate physical constraints or discover dynamics expressed in terms of partial differential equations.

Unfortunately, sparse identification of implicit ordinary differential equations written in terms of rational functions, which are
usually formulated for openloop multibody systems, seems to be still a challenging issue. The problem is resolved by gener
ating the null space to the matrix involving the function candidates. Nevertheless, this approach is known to be susceptible to
measurement noise [3]. The other method to deal with rational nonlinearities exploits partial knowledge of the identified model
to transform the procedure into a sequence of multiple executions of the SINDy framework. Although this method might be
parallelized, it is also computationally expensive [3]. The objective of this paper is to present the application of the sparse iden
tification procedure for fully actuated, openloop multirigidbody systems, which partially alleviate the abovementioned flaws.
The proposed reformulation avoids the need to compute the problematic null space matrices and poses the leastsquares problem
in a standard setting in which a multibody system trajectory and the corresponding velocities, accelerations in combination with
control forces/torques are measured and delivered to the identification procedure.

2 Jointcoordinate formulation and sparse identification

The jointcoordinate formulation is used in this paper to generate the equations of motion for an openloop multibody system.
The procedure ultimately gives a system of ordinary differential equations for the unknown joint positions, velocities, and accel
erations. For an openchain system containing 𝑛𝑏 bodies and 𝑛 degrees of freedom, joint coordinates are defined by the following
vector 𝐪 ∈ ℛ𝑛. It can be shown [4] that the equations of motion for a multirigidbody system can be written as

(𝐇𝑇 𝐌𝐇)⏟⏟⏟⏟⏟
ℳ

̈𝐪 −𝐇𝑇 (𝐐−𝐌�̇� ̇𝐪)⏟⏟⏟⏟⏟⏟⏟
ℱ

= 𝐮 → ℳ(𝐪) ̈𝐪 −ℱ(𝐪, ̇𝐪) = 𝐮, (1)

where 𝐌 ∈ ℛ𝑛𝑏×𝑛𝑏 is the mass matrix, 𝐐 ∈ ℛ𝑛𝑏 is a vector of applied forces, 𝐇 = 𝐇(𝐪) ∈ ℛ𝑛𝑏×𝑛 represents the joint’s motion
subspace matrix, which relates the absolute and relative velocities (𝐕 = 𝐇 ̇𝐪 and 𝐕 ∈ ℛ𝑛𝑏 is a vector of absolute velocities). To
evaluate 𝐇 one needs to consider the type of joints in the chain and the topology of the system. The quantity 𝐮 ∈ ℛ𝑛 is a vector
of applied control forces/torques at joints that are measured together with the jointspace trajectories 𝐪 and their time derivatives

̇𝐪, ̈𝐪 to be passed onto the identification procedure described next.

The sparse identification concept [2] is exploited in this paper to identifiy the nonlinear dynamics of openchainmultibody systems
from simulated data. It is assumed that the dynamics of a system can be represented by the linear combination of columns from
a feature library 𝚯 = 𝚯(𝐪, ̇𝐪, ̈𝐪) ∈ ℛ𝑛×𝑝 that consists of predefined basis functions multiplied by entries of the unknown vector
of coeficients 𝝃 ∈ ℛ𝑝 such that

ℳ(𝐪) ̈𝐪 −ℱ(𝐪, ̇𝐪) = 𝚯(𝐪, ̇𝐪, ̈𝐪)𝝃 = 𝐮 +𝝐, (2)

where 𝝐 ∈ ℛ𝑛 is the residual error vector to be minimized. Eq. (2) can be regarded as a measurement in one time instant. In
reality, the values in the formula (2) should be evaluated at a sufficient number of points in time along appropriately defined
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trajectories [1]. There is a vast number of identification procedures to estimate 𝝃 from the overdetermined system of linear
equations (2). Those based on the standard leastsquares approach would usually give a solution in which every term from the
predefined library is active in the model. In consequence, the identified model would be prone to overfitting. However, if sparsity
of 𝝃 is induced by the regularization term, then most of the entries in 𝝃 are zero and the generated model tends to prevent from
such phenomenon to appear. Formally, the problem might be written as regularized regression:

𝝃∗ = argmin
𝝃

||𝚯𝝃 −𝐮||2 +𝛼||𝝃||1, (3)

where the parameter 𝛼 corresponds to a regularization coefficient. The approach proposed in the paper generates sparse nonlinear
multibody models from data by bypassing the need to evaluate the null space matrix of the 𝚯 matrix.

3 Preliminary results and summary

To demonstrate the validity of the proposed approach, a sample planar twobody system shown in Fig. 1 is simulated for 5 sec.
The trajectory 𝐪, ̇𝐪, ̈𝐪 (𝐪 = [𝑞1 𝑞2]𝑇 ) resulted from predefined control signals 𝐮 = [𝑢1 𝑢2]𝑇 is recorded every 0.01𝑠𝑒𝑐.. Then,
sparse identification is performed to evaluate the active terms in the feature library that consists of e.g. harmonic functions,
products of squared velocities by harmonic functions, products of harmonic functions times the accelerations. The penalty factor
is set experimentally to 𝛼 = 0.001. The algorithm correctly identifies the sample planar system. The model is subsequently used
in the inverse dynamics control (IDC) that should realize the trapezoidal velocity trajectory at translational and revolute joint.
The results are comparatively set with the pure PD controller and shown in Fig. 2. The IDC method with the model performs
better than the simple PD approach, which partially verifies the identified equations for the openloop system.
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Figure 1: Multibody system (𝐿 = 0.25𝑚, 𝑚1 = 0.5𝑘𝑔, 𝑚2 =
0.2𝑘𝑔, 𝐽1 = 𝐽2 = 0.005𝑘𝑔𝑚2, 𝑔 = 9.81 𝑚

𝑠2 , 𝑞1(0) = 0𝑚,
𝑞2(0) = − 3𝜋

4 𝑟𝑎𝑑). The following control signals (𝑢1 =
sin(0.01𝑡), 𝑢2 = −0.01sin(2𝑡)) are used in the identification
phase
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Figure 2: The top plot shows joint velocities for ideal PD
controller set against inverse dynamics control (IDC) that ex
ploits the identified model. The bottom plot presents the cor
responding control signals that force the system to move from
𝐪𝑖𝑛𝑖𝑡 = [0 3

4 𝜋]𝑇 to 𝐪𝑓𝑖𝑛𝑎𝑙 = [1 𝜋]𝑇
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EXTENDED ABSTRACT

1 Introduction

The centrifugal pendulum vibration absorber (CPVA) is a widely adopted order-tuned device, aimed to isolate torsional vibrations
in rotating and reciprocating machinery. The absorbers counteract torque disturbance at a given harmonic order through their
oscillation along a prescribed path. The dynamic behavior and damping performance heavily depend on a geometric feature,
namely the absorber COM trajectory.

Early investigations on this topic are due to Salomon [1], Sarazin [2], Den Hartog [3] and Newland [4]. Their design solutions
were based on linear approximation, absorber small oscillation and circular paths. The first design architecture, the Salomon’s
one, is constituted by a series of rollers, which act as absorbers, whereas the most common architecture now is the bifilar one,
as shown in Figure 1. According to the slots orientation, the relative absorber motion can be a translation or a rotation. The
corresponding pendula are denoted as parallel and trapezoidal bifilar dampers, respectively.

Figure 1: Parallel bifilar pendulum

For large oscillation, nonlinear behavior is observed. Madden [5] and Denman [6] were the first to investigate the advantages of
tautochronism for vibration isolation improvement. The critical feature of tautochrone dampers, based on epicycloidal paths, is
a quasi-linear behavior, even for large oscillation. Significant theoretical groundwork is also due to Shaw and coworkers (e.g.
[7, 8, 9]). Recent developments in this area are portrayed by Cera et al. [10, 11, 12], Mayet & Ulbrich [13, 14] and Gomez et al.
[15].

2 Problem description and modeling

Most of the previously cited contributions share simplifying hypotheses that neglect important physical phenomena. Although
such hypotheses are required for the settings of design equations, as well as the casting of analytical models, these may heavily
affect the expected CPVA performance. To shed some light in this intricate topic, the present investigation is an attempt to fill this
apparent gap through an holistic modeling of these devices. With its capability to embrace and handle complex physical features,
multibody dynamics undoubtedly offers an effective framework.

For our purposes, a CPVA multibody dynamics model with the following relevant characteristics has been developed:

• parallel bifilar architecture;

• quasi-tautochrone behavior;

• thirteen rigid bodies: four absorbers, one rotor, two rollers for each absorber;

• each roller is caged and meshes with slots carved both on the absorbers and on the rotor, its shape is such to enforce
quasi-tautochrone dynamic behavior;
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• for smoothing impacts observed during transients, each absorber includes two stop dampers at the edges.

Particular care was dedicated to the contact modeling of kinematic elements of the caged roller joints [16] and of the stop dampers.

3 Simulation analysis and conclusions

The effects herein analyzed in the multibody dynamics simulation are due to the following issues:

• rotor start and stop, sharp acceleration and deceleration transients;

• synchronous response of the absorbers;

• friction coefficient required to establish pure rolling condition between roller and slots;

• multi harmonic content of the disturbing torque;

The first results confirm the need of a multibody dynamics of these important devices. In fact, a procedure where multibody
dynamics simulation is included in the design iteration, allows solutions with more effective vibration attenuation.
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EXTENDED ABSTRACT

1 Introduction

GENERIC is an acronym for “General Equation for Equilibrium Reversible Irreversible Coupling” [1] and facilitates the thermo-
dynamically consistent formulation of general thermoelastic dissipative material behavior [2]. In particular, GENERIC can be
viewed as extension of the Hamiltonian framework of dynamics to dissipative systems [3]. Correspondingly, GENERIC has been
used as starting point for the development of Energy-Momentum-Entropy schemes [4, 5, 6] which can be viewed as extension of
Energy-Momentum schemes for Hamiltonian systems with symmetry.

In the present work we aim at the inclusion of constraints into GENERIC along with structure-preserving time-stepping schemes
for constrained dissipative mechanical systems.

2 Representative model problem

To introduce the main building blocks of GENERIC for dissipative systems, we consider the discrete model problem of a thermo-
viscoelastic double pendulum [7] depicted in Figure 1.

m2

ueq
1

γ2

λ2 − γ2

λ2 = ‖q2‖
g

η

uneq
2

ueq
2

m2

e1

e2

e3

λ1 = ‖q1‖

κ(θ1 − θ2)

m1

Figure 1: The thermo-viscoelastic double pendulum

The system’s dynamic evolution is characterized by the time derivative of the vector of the state variables

z =
[
qT

1 ,q
T
2 ,p

T
1 ,p

T
2 ,τ1,τ2,γ2

]T
. (1)

The corresponding state space S is given by

S = {z ∈ (Rndim ×Rndim ×Rndim ×Rndim ×R×R×R) , q1 6= 0, q2 6= 0} (2)

with ndim ∈ {2,3}, being the spatial dimension.

In (1), qα ,pα ,τα ,γα (α = 1,2) are the thermo-element’s respective generalized positions, conjugate momenta, thermodynamic
and internal variables. Each element’s material response is determined by a temperature-dependent free Helmholtz energy func-
tion ψα . Legendre transformation enables the computation of the entropy and internal energy. Thus, a generalized thermodynamic
variable τα ∈ {sα ,θα ,uα} can be introduced, allowing for the choice of the entropy, the temperature or internal energy. A law
for the heat flux and an evolution equation for γα complete the description of the thermodynamic problem.

The model problem at hand is thermally insulated and represents a closed system. Thus the total energy is conserved. Due to
heat conduction and viscous deformations the system is dissipative leading to a non-decreasing total entropy. In addition to that,
the system is invariant with respect to rotations about base vector e2, so that the corresponding component of the total angular
momentum is a conserved quantity.
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3 GENERIC-based formulation

GENERIC casts a system’s evolution equations in a matrix-vector formulation

ż = żrev + żirr = L(z)∇E(z)+M(z)∇S(z) (3)

by separating the contributions to the reversible and irreversible dynamics. The reversible time evolution is controlled by the
product of the Poisson matrix L : S → Rdim(z)×dim(z) and the gradient of the total energy E : S → R. The dissipative matrix
M : S → Rdim(z)×dim(z) acts on the gradient of the total entropy S : S → R and yields the system’s irreversible dynamics.

GENERIC imposes the following degeneracy conditions

L∇S = 0 (4)
M∇E = 0

besides restrictions on the Poisson and dissipative matrices for reasons of thermodynamic consistency.

4 ENERGY-MOMENTUM-ENTROPY time-stepping scheme

We apply a structure-preserving variant of the implicit mid-point rule to numerically integrate the evolution equation (3). The
Energy-Momentum-Entropy time-stepping scheme can be written in the form

zn+1− zn

∆t
= L(zn+1,zn)DE(zn+1,zn)+M(zn+1,zn)DS(zn+1,zn) . (5)

Herein, D(•)(zn+1,zn) denotes a discrete derivative in the sense of Gonzalez [8]. The resulting scheme is capable to exactly repro-
duce the fundamental structure properties of the model problem mentioned at the end of Section 2. This implies (i) conservation
of total energy, (ii) non-decreasing total entropy, and (iii) conservation of the 2-component of the total angular momentum.

5 Constrained dissipative mechanical systems

The aim of the present work is to extend GENERIC to dissipative systems subjected to constraints. In particular, the inclusion of
ideal constraints needs to preserve the thermodynamically consistent framework of GENERIC. The thus extended formulation
will provide the ideal starting point for the design of structure-preserving schemes for constrained dissipative mechanical systems.
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EXTENDED ABSTRACT

1 Background and problem statement

Modeling friction is a challenging problem that has been investigated for a while in multibody system dynamics simulations. The
tribological models that represent friction phenomena are too complex to be broadly used in multibody simulations due to the
fact that the required computational expense is excessively large. The friction models used in multibody simulations result from
a compromise which takes into account the range of captured frictional effects (e.g., Stribeck effect, stickslip motion, viscous
damping, microslips, external force rate dependency, hysteresis, frictional memory, etc.), the expected fidelity, the possibilities for
identification of parameters, the mathematical complexity, the effectiveness of numerical calculations and perhaps other factors.
It is quite often the case that relatively simple, lumped models of frictional contact are used in multibody calculations, especially
when they are intended for control purposes [1]. In this approach, the microscale contact phenomena are not directly represented
in their full complexity. As a result, these models are computationally effective and a reasonably small number of parameters
needs to be identified, while they are still capable to capture the essence of the complicated friction phenomena.

When choosing the friction model, numerical issues are not to be underestimated. The strong nonlinearity in the vicinity of zero
relative velocity (which has the form of discontinuity in the classical Coulomb and Amontons model) results in numerically stiff,
and therefore computationally cumbersome, system dynamics, especially when redundant constraints are imposed on the system
[2]. The efficiency of multibody system simulations is strongly affected by taking friction effects into account. The time step of
numerical integration must be severely decreased to capture the essential effects. Moreover, whenever friction force is a nonlinear
function of normal reactions, an iterative process (most often fixedpoint iterations) must be employed – at each time step – to
find the Lagrange multipliers which represent magnitudes of normal reaction forces. The objective of this research is to adapt the
classical Coulomb friction model to the constrained Hamiltonian formulation in which positions and momenta play the primary
role. It is interesting to note that the impulses of joint loads are readily available in the Hamiltonian framework employed here.
Therefore, by taking the time derivatives of the impulses, one might find the approximations of both constraint reaction forces
as well as friction forces. In contrast to the classical, accelerationbased formulation, the proposed approach approximates the
friction effects without the need to employ an iterative process, which forms a novelty stemming from the paper.

2 Friction forces in the Hamiltonian formulation

The translational and angular position of rigid bodies in a multibody system in a global reference frame are described by a
vector of 𝑛 dependent coordinates 𝐪 ∈ ℛ𝑛. If the number of coordinates is greater than the number of the system’s degrees of
freedom, the algebraic constraints are introduced to express the relations between coordinates in a multibody system. Usually,
these relationships express the fact that bodies are connected by joints. Let us assume that 𝑚 independent holonomic constraint
equations are imposed on the system that let one yield the kinematic velocity equations as well.

𝚽(𝐪,𝑡) = 𝟎 → �̇�(𝐪, ̇𝐪, 𝑡) = 𝚽𝐪 ̇𝐪 +𝚽𝑡 = 𝟎, (1)

where𝚽𝐪 ∈ ℛ𝑚×𝑛 is the constraint Jacobianmatrix and ̇𝐪 ∈ ℛ𝑛 is a vector of translational and angular velocities. The constrained
Hamiltonian equations of motion that enforce velocity level constraints can be written in the form [3, 4]

[ 𝐌 𝚽𝑇
𝐪

𝚽𝐪 𝟎 ][ ̇𝐪
𝝈 ] = [ 𝐏∗

−𝚽𝑡
], (2)

�̇�∗ = 𝐐(𝐪, ̇𝐪, 𝑡)+𝐐𝑓(𝐪, ̇𝐪,𝝀)+�̇�𝑇
𝐪 𝝈, (3)

where 𝐌 is the inertia matrix for all bodies in the system, 𝝈 represents a vector of 𝑚 additional Lagrange multipliers associated
with the velocity level constraint equations, 𝐏∗ is a vector of modified momenta, 𝐐 contains postion and velocitydependent
forces and torques, and 𝐐𝑓 is a vector of generalized Coulomb friction forces/torques, which are nonlinear functions of positions
𝐪, velocities ̇𝐪, and the Lagrange multipliers 𝝀. The authors argue in the paper that the unknown multipliers 𝝀 might be computed
from the relation 𝝀 = �̇�, which follows after the completion of the first step in Eq. (2).
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3 Preliminary results and summary

To demonstrate the validity of the proposed approach, a sample fourbar mechanism shown in Fig. 1 is simulated. The masses,
inertias, and link lengths are given in the caption of the figure. Three sources of loads are modeled in the system. The gravity
forces act on all bodies in the system. The external force 𝐹𝑒𝑥(𝑡) defined in Fig. 1 (green arrow) acts on body two only. Joint
friction torques denoted by red symbols in the figure are expressed by discontinuous Coulomb friction model

𝑇𝑖 = −𝑎𝜇𝐹𝑁(𝐪,𝝀)sign(𝜔𝑟𝑒𝑙
𝑖 ), (4)

where 𝐹𝑁 is the absolute value of normal reaction force due to contact, 𝜔𝑟𝑒𝑙
𝑖 is a joint relative velocity, and 𝑎𝜇 is a product of the

radius of a shaft and the coefficient of friction.
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Figure 1: Planar fourbar mechanism (ℎ = 1𝑚, 𝑚1 = 𝑚3 =
1𝑘𝑔, 𝑚2 = 2𝑘𝑔, 𝐽1 = 𝐽3 = 1
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Figure 2: Vertical position of body 1 and 2, and Coulomb
friction torques for the Hamiltonian (H, coloured lines) and
accelerationbased formulation (dotted lines)

The motion of the system is investigated by using Hamilton’s equations of motion (2), (3) proposed in the paper and integrated
with the 4𝑡ℎ–order RungeKutta fixedstep routine with the timestep Δ𝑡 = 0.01𝑠. The Lagrange multipliers 𝝀 are found from
the relation 𝝀 = �̇� by using the secondorder backward finite difference. Other methods to compute numerical derivatives might
be exploited here in order to increase the accuracy of the approximation. The upper plot in Fig. 2 shows vertical positions of the
first and second body of the fourbar. The graph at the bottom demonstrates the time histories of the generalized friction torques
acting on the bodies vs. time. The results show that the fourbar system responds in a discontinuous manner when it comes to
friction torques. Essentially, identical solutions are obtained with a more classical, accelerationbased approach that seems to be
computationally more demanding than the proposed method due to the fixedpoint iterations employed at each time step. Further
research is possible to model friction in the Hamiltonian framework including the issue of computing numerical derivatives and
its subtle interplay with the integrator on top of the quality of the results and computational efficiency of the procedure.
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EXTENDED ABSTRACT

1 Introduction

Earthquakes are one of the most dangerous hazards to our civilization. Protecting buildings is of special interest in earthquake
engineering to save life during an earthquake as well as to maintain critical infrastructure for rescue operations after such an
event. In this work, special attention is given to the bridge expansion joints, which connects the bridge with the abutment. Other
works like [1] investigated the seismic response of bridges with models which represent the pounding on finger expansion joints.
In this work however, a multibody dynamics model of more complex modular expansion joints will be built with which the
effect on seismic events on bridges will be investigated. The mechanical control mechanism of modular expansion joints can,
depending on the bridge size, consist of several hundred bodies and therefore around thousand degrees of freedom (DOF).

2 Modeling

The investigated expansion joint type is a so called swivel joist expansion joint as displayed in figure 1. The edge beam is
connected to the bridge structure and defines the moving side of the expansion joint. The rubber bearings, which are connected to
the edge and center beams with a bushing to represent their flexibility, can rotate about the local z-axis. They can also slide along
the corresponding joist and can be therefore seen as prismatic joint pair. The bearings are preloaded with 25kN which produces
friction forces of 1-3kN, depending on the used sliding material. The joist endings on the opposite side of the edge beam are
fixed to the environment in all translational directions.

(a) Top view
(b) 1: Edge Beam, 2: Center Beam, 3:
Joist, 4: Bearing

Figure 1: Expansion joint model with 307 rigid bodies, 270 bushings, 270 friction force elements and 270 prismatic sliding joints

The model can be built as a 3D or 2D model. A rigid body in the 3D model is described by three cartesian coordinates and four
Euler parameters. To reduce the DOF, a 2D model with 921 DOF is implemented for the displayed expansion joint in figure
1, where a rigid body has DOF in translational x- and y-direction as well as a rotational DOF around the z-axis. The friction
between the bearings and the corresponding joists is described by the regularized Coulomb friction model as described in [2].

The kinematic differential equations of each 2D body, the constraint equations arising from the prismatic joints and the forces
of the connecting bushings leading to the well known differential algebraic equation (DAE) system of index 3. Reducing the
index to 1 and applying the stabilization of Gear, Gupta and Leimkuhler [3], the DAE can be rewritten as a ordinary differential
equation (ODE) of the form

ẏ = z+ JT
g −

(
JgJT

g
)−1

Jgz
︸ ︷︷ ︸

µ

Mż = Fe + JT
g −

(
JgM−1JT

g
)−1 (

J̇gz+ JgM−1Fe)
︸ ︷︷ ︸

λ

(1)

where y are the position coordinates, z are the velocities, M is the mass matrix, Fe are the external forces, Jg is the jacobian
matrix ∂g(y)/∂y of the constraint equations g(y) and λ as well as µ are the Lagrange multipliers. The calculation of Fe, Jg and
the Lagrange multipliers is performed by functions implemented in Python. Those functions are using the fast and well known
numpy library for dot products and solving linear equation systems.
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3 Optimization

Even though the implementation in Python is mostly done with numpy arrays and methods, which are programmed in C to
achieve better performance, some functions with pure Python code are called very often and can therefore benefit from code
optimization. One possibility is to compile the already programmed Python code with numba, which is a just in time compiler
for Python with numpy. A compilation of functions, which are called up to 5e5 times per time step like the computation of the
bushing forces, reduces the time needed for a function call of q̇ = f (t,q) from 0.25s to 0.02s on a machine with 16 Intel Core i7
CPU’s at 3.8GHz.

Hairer and Wanner [4] suggest implicit methods for stiff ODE. Those methods needs to solve a nonlinear equations system for
every time step. In order to solve this equation system, the Jacobian Matrix ∂ f/∂q is needed. The determination of this matrix
is the most time consuming part at large models because many function evaluations of f (t,q) are needed. Using the sparsity
pattern of the Jacobian as described by Curtis, Powell and Reid [5], only non-zero entries of the Jacobian need to be calculated
which reduces the overall computation time from 120s with a dense Jacobion by finite differences to 50s. This functionality
is already implemented within scipy.integrate, only the sparsity pattern must be calculated in advance which could be done by
finite differences. A very promising alternative to the sparsity pattern of the Jacobian is a parallelization of the column-wise
computation. Therefore, a wrapper function for the calculation of the independent columns of the Jacobian is implemented
which spawns processes with the Python multiprocessing module, which is highly effective for those CPU bound tasks. With this
parallelization, the Jacobian can be evaluated in less than 15s and might be even more efficient on machines with a higher core
count.

4 Results

With the aforementioned optimization the model displayed in figure 1 could be simulated in less than 8 hours. The edge beam
is connected to a single DOF mass which represents the bridge. This mass is connected to the environment by a bushing with
the stiffness and damping properties of the corresponding bridge. The environment itself executes a ground motion caused by an
earthquake. The following graph shows the acceleration of the bridge with and without the expansion joint.
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Figure 2: Acceleration of the theoretical bridge model during an earthquake event with and without the expansion joint

5 Conclusion

The optimization steps made it possible to achieve a simulation result for high DOF expansion joint models with many stiff force
elements in a few hours instead of several days. The result gives a first impression how an expansion joint performs during an
earthquake event. The peak acceleration of the theoretical bridge decreased significantly which indicates that expansion joints
could be further developed to act as a seismic protection device.
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EXTENDED ABSTRACT

1 Problem Description

A generic constrained system dynamics problem is formulated by adding m (holonomic, in the present case, and ideal) kinematic
constraints, in form of the set of algebraic equations

c(x, t) = 0 (1)

to a set of n ordinary differential equations (n > m) that express the dynamics of an unconstrained system of n coordinates x,

Mẍ = f (2)

equations that are modified by the addition of the constraint reactions fc =−cT
x λ as

Mẍ+ cT
x λ = f (3)

where cx = A is the partial derivative of the constraint equations c with respect to the coordinates x, namely the constraint
Jacobian matrix, and λλλ are the corresponding Lagrange multipliers.

The Minimal Coordinate Set approach consists in defining a suitable subspace T of the space spanned by the coordinates x which
is tangent to the constraint manifold, namely TT AT ≡ 0, such that

ẋ = Tq̇+β ′ (4a)
ẍ = Tq̈+β ′′ (4b)

where q are local, truly independent coordinates, with β ′ non-zero only in case of rheonomous constraints, and β ′′ defined
accordingly. The constrained dynamics problem, projected in such subspace, yields

TT MTq̈+���TT AT λ = TT f−TT Mβ ′′ (5)

Among the several approaches proposed in the literature [1], a suitable choice for T is obtained through the QR decomposition
of the transpose of the constraint Jacobian matrix,

AT = QR =
[

Q1 Q2
][ R1

0

]
= Q1R1 (6)

where matrix Q is orthogonal and submatrix R1 is upper triangular. Submatrix Q2 represents an optimal choice for T.

Submatrices Q1 and R1 are uniquely determined, once A is known. Submatrix Q2, instead, is only subjected to matrix Q’s
constraint of being orthogonal, namely QT

2 Q2 ≡ I and QT
2 Q1 ≡ 0, but otherwise undefined.

In fact, the QR decomposition produces a “local” representation of the constraint Jacobian matrix; as such, the generalized
coordinates associated with the subspace T = Q2, which do not have any specific physical meaning, represent a local reparame-
terization of the subspace of the coordinates that is tangent to the constraint manifold. When the QR decomposition is computed
at different time steps tk, if n−m > 1 the columns of the resulting Q2k

are completely unrelated, their resulting value being
dictated by the internal intricacies of the QR decomposition algorithm.

The aim of the present work is to propose a simple and intuitive algorithm that tracks the evolution of the subspace spanned by
Q2 using some sort of “continuation,” to somewhat preserve the continuity of the generalized coordinates, by minimizing the
amount of deviation of the subspace that is intrinsically required to maintain Q2 tangent to the constraint manifold.

Consider the time derivative of the transpose of the constraint Jacobian matrix,

ȦT
= Q̇R+QṘ (7)

1Ping Zhou is currently a visiting PhD student at Politecnico di Milano.
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The derivative of matrix Q may be expressed as Q̇ = QΩΩΩ, where the skew-symmetric nature of matrix ΩΩΩ descends from the
orthogonality of matrix Q.

When the problem is integrated numerically, the solution from time step tk to time step tk+1 is computed. The QR decomposition
at time tk yields submatrices Q1k

and R1k . The generalized velocities at time tk are computed with reference to the subspace
spanned by Q2k

. After computing the solution at the new time step, the Jacobian matrix at time tk+1 is known. As such,
through the economy QR decomposition of its transpose, submatrices Q1k+1

and R1k+1 are determined. Instead of computing also
submatrix Q2k+1

through the full QR decomposition, the proposed continuation algorithm is used as illustrated in the following.
Consider

QT
1 ȦT R−1

1 = QT
1 Q̇1 + Ṙ1R−1

1 (8)

Matrix Ṙ1R−1
1 is the product of two upper triangular matrices, thus it is itself an upper triangular matrix. Matrix QT

1 Q̇1 = ΩΩΩ1 is
skew-symmetric by construction; it can be seen as ΩΩΩ1 = ΩΩΩ1L−ΩΩΩT

1L
, where ΩΩΩ1L = stril(ΩΩΩ1) is the strictly lower triangular part of

matrix ΩΩΩ1. Thus one can write

stril
(

QT
1 ȦT R−1

1

)
= ΩΩΩ1L (9)

since stril
(
Ṙ1R−1

1

)
≡ 0 by construction. One can show that the derivative of matrix Q,

Q̇ =
[

Q̇1 Q̇2
]
=
[

Q1 Q2
]
[

ΩΩΩ1 −R−T
1 ȦQ2

QT
2 ȦT R−1

1 ��ΩΩΩ2

]
=
[

Q1 Q2
][ ΩΩΩ1 −ΩΩΩT

21
ΩΩΩ21 0

]
= QΩΩΩ (10)

is entirely known, where the bottom right block should contain an arbitrary contribution ΩΩΩ2, that is set to zero to modify as little
as possible the subspace Q2; specifically,

Q̇2 =−Q1ΩΩΩT
21 =−A+ȦQ2 (11)

Thus, the subspace Q2 can be integrated, taking appropriate measures (e.g. using Munthe-Kaas’ method [2]) to guarantee that
the resulting matrix Q preserves orthogonality, and submatrix Q1 matches that resulting from the decomposition of the transpose
of the constraint Jacobian matrix. For example, for ΩΩΩ constant across a time step of duration tk+1− tk = h,

Qk+1 = QkeΩΩΩh (12)

or

Q2k+1
= e−A+ȦhQ2k

(13)

the latter being only a first-order approximation of the former, since the intrinsic skew-symmetric structure of the exponent matrix
ΩΩΩ is lost.

Submatrix Q2k+1
resulting from the proposed integration may need to be corrected to guarantee orthogonality with respect to

submatrix Q1k+1
obtained from the economy QR decomposition of AT

k+1.

2 Results

The full paper will present numerical results that illustrate the proposed formulation.

Acknowledgments

The first author acknowledges support from the China Scholarship Council.

References

[1] L. Mariti, N. P. Belfiore, E. Pennestrì, and P. P. Valentini. Comparison of solution strategies for multibody dynamics equa-
tions. Intl. J. Num. Meth. Engng., 2011. doi:10.1002/nme.3190.

[2] Hans Munthe-Kaas. High order Runge-Kutta methods on manifolds. Applied Numerical Mathematics, 29(1):115–127, 1999.
doi:10.1016/S0168-9274(98)00030-0.

161



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

The GGL Variational Principle for Constrained Mechanical Systems
Philipp L. Kinon, Peter Betsch

Institute of Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
philipp.kinon@student.kit.edu, peter.betsch@kit.edu

EXTENDED ABSTRACT

1 Introduction

We present an extension of the Livens variational principle (sometimes also referred to as Hamilton-Pontryagin principle) to
mechanical systems subject to holonomic constraints. The newly proposed principle embodies an index reduction in the spirit
of the often-applied GGL stabilization and thus may be termed “GGL principle”. The Euler-Lagrange equations of the GGL
principle assume the form of differential-algebraic equations (DAEs) with differentiation index two. In contrast to the original
GGL-DAEs, the present formulation fits into the Hamiltonian framework of mechanics. Therefore, the GGL principle facilitates
the design of symplectic integrators. In particular, it offers the possibility to construct variational integrators. Due to the close
relationship of the GGL principle to optimal control, previously developed direct methods based on the philosophy “first discretize
then optimize” can be used to obtain variational integrators for constrained mechanical systems. These integrators are symplectic
by design. Furthermore, slight modifications can be applied to obtain energy-momentum consistent integrators which represent
another important class of structure-preserving time-stepping schemes.

2 The original Livens principle

Consider a dynamical system with d degrees of freedom with positions qqq ∈ Rd . From Hamilton’s principle of least action one
can proceed by allowing the velocities to be independent variables vvv ∈ Rd . Thus, the kinematic relation q̇qq = vvv has to be enforced
by means of a Lagrange multiplier ppp ∈ Rd . The corresponding augmented functional reads

S̃(qqq,vvv, ppp) =
∫ T

0
[L(qqq,vvv)+ ppp · (q̇qq− vvv)] dt , (1)

where L(qqq,vvv) is the Lagrangian. The functional (1) was firstly termed Livens principle (cf. Sec. 26.2 in Pars [1]) after G.H.
Livens who proposed this functional for the first time (cf. Livens [2]). More recently, Marsden and co-workers [3, 4] coined
the name Hamilton-Pontryagin principle for this functional due to its close relation to the classical Pontryagin principle from the
field of optimal control. Due to its mixed character with three independent fields (qqq,vvv, ppp), it resembles the Hu-Washizu principle
from the area of elasticity theory.

Livens principle unifies both Lagrangian and Hamiltonian viewpoints on mechanics and automatically accounts for the Legendre
transformation. By stating the stationarity condition δ S̃(qqq,vvv, ppp)= 0 and executing the variations with respect to every independent
variable, one obtains the three equations of motion

q̇qq = vvv , (2a)
ṗpp = D1L(qqq,vvv) , (2b)
ppp = D2L(qqq,vvv) . (2c)

With regard to (2c) the multiplier ppp can be identified as the conjugate momentum, which thus directly emanates from the principle.
Within the framework of Hamiltonian dynamics momentum variables have to be defined a priori or emerge from the Legendre
transformation as a fiber derivative of L(qqq, q̇qq). Note that after reinserting (2c) into (2b) and making use of (2a), Livens principle
traces back to the Lagrangian equations of the second kind.

For natural mechanical systems the Lagrangian takes the form L(qqq,vvv) = 1
2 vvv ·MMMvvv−V (qqq), where MMM is the mass matrix and V (qqq)

is a potential function. Now (2c) yields ppp = MMMvvv, so that (2a) and (2b) can be rewritten as

q̇qq = MMM−1 ppp , ṗpp =−DV (qqq) . (3)

These equations correspond to the Hamiltonian form of the equations of motion.

3 The GGL method for constrained mechanical systems

Assume that the coordinates qqq are redundant due to the presence of m independent scleronomic, holonomic constraints gk : Rd→
R (k = 1, . . . ,m). The constraints can be comprised in a column vector ggg ∈ Rm, such that

ggg(qqq) = 000 . (4)
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Since all constraint functions shall be independent, the constraint Jacobian GGG(qqq) = Dggg(qqq) is of rank m. As (4) is true for any
point in time, the time derivative has to vanish accordingly (consistency condition). Thus, the constraints on velocity level or
secondary constraints

d
dt

ggg(qqq) = GGG(qqq)q̇qq = 000 (5)

are induced. It is well-known that the motion of the constrained mechanical systems under consideration is governed by
differential-algebraic equations (DAEs) which have differentiation index ν = 3. These equations of motion can be derived with
a variational approach, which augments Livens principle (1). Accordingly, introducing Ŝ(qqq,vvv, ppp,λλλ ) = S̃(qqq,vvv, ppp)+

∫ T
0 λλλ ·ggg(qqq)dt,

stating the stationary condition δ Ŝ(qqq,vvv, ppp,λλλ ) = 0 and eliminating the velocities as above leads to an extension of the Hamiltonian
equations (3) for constrained systems, such that the index-3 DAEs are obtained as

q̇qq = MMM−1 ppp , ṗpp =−DV (qqq)−GGG(qqq)Tλλλ , ggg(qqq) = 000 . (6)

The classical GGL stabilization, which traces back to Gear et al. [5], represents an index reduction technique by minimal exten-
sion (see, for example, Kunkel and Mehrmann [6]). The main idea of the GGL stabilization is to couple the secondary constraints
into the dynamics by making use of additional variables γγγ ∈ Rm, such that the system of equations of motion is extended and
the differentiation index drops to ν = 2. Correspondingly, the numerical ill-conditioning of index-3 DAEs are alleviated without
having the drawback of drift phenomena. The resulting index-2 DAEs can be written in the form

q̇qq = MMM−1 ppp+GGG(qqq)Tγγγ , (7a)

ṗpp =−DV (qqq)−GGG(qqq)Tλλλ , (7b)
000 = ggg(qqq) , (7c)

000 = GGG(qqq)MMM−1 ppp . (7d)

Ever since, the GGL stabilization has been widely used and is thus of great importance. Numerical methods can be constructed
directly by discretizing the DAEs (7). Note however that due to the GGL modification of the kinematic equation (7a), the system
(7) loses its Hamiltonian structure. For the time-continuous case, some algebra leads to γγγ = 000. Consequently, the GGL-DAEs
boil down to the standard formulation (6).

4 The GGL principle

The newly proposed GGL principle relies on the generalization of Livens principle (1) by considering Lagrange multipliers λλλ ,γγγ ∈
Rm to enforce the primary constraints (4) and secondary constraints (5), respectively. Imposing stationarity on a corresponding
augmented action integral

δSGGL(qqq,vvv, ppp,λλλ ,γγγ) = 0 (8)

yields Euler-Lagrange equations with a kinematic relation similar to (7a). Thus equations in the fashion of (7) are obtained with
an additional term in the momentum equation. By discretizing the action integral of the GGL principle variational integrators for
the simulation of constrained dynamical systems can be achieved, which are by design symplectic.

Similar to the classical GGL stabilization one obtains γγγ = 000 for the time-continuous case. The equations of motion derived
by means of the GGL principle however do not require γγγ = 000 to conserve the Hamiltonian H or the symplectic structure. The
equations of motion induced by the GGL principle have Hamiltonian structure with a corresponding augmented Hamiltonian

HGGL(qqq, ppp,λλλ ,γγγ) =
1
2

ppp ·MMM−1 ppp+V (qqq)+λλλ ·ggg(qqq)+ γγγ ·GGG(qqq)MMM−1 ppp . (9)

The novel framework thus also allows for an energy-momentum consistent discretization.
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EXTENDED ABSTRACT

1 Introduction

Compared to serial robotic systems, parallel kinematic machines (PKMs) [4] offer benefits like superior agility, high acceleration
and payload. This leads to increased wear and fatigue of individual components, in particular joints. That has to be considered
and taken into account for time optimal motion planning in order to reduce and limit the joint reaction forces λλλ . Moreover,
limiting the joint reaction forces allows to reduce wear of the linkages and avoid damage of the mechanism in advance. However
it is common practice to only consider the actuator torques τττ as limitations. The classical approach is to obtain the actuator
torques using inverse dynamics and calculate the constraint forces separately if needed. In this paper a formulation is presented
that obtains both in one step for a given motion trajectory q(t) of the actuated joints. To this end, the system is completely
constrained to have DOF zero. An important advantage is that the mass matrix M of the absolute coordinate formulation need
not be inverted. The presented approach is a completely general one, although the δ = 4 DOF Delta robot is considered as an
example throughout this paper.

2 Forward Kinematics

The rigid multibody system comprised of N bodies is modeled using absolute coordinates with the vector zT
i =

[
ϕϕϕT

i IrT
i
]
.

The orientation ϕϕϕ i is described using e. g. Euler parameter or quaternions and Iri denotes the position of the center of gravity
(COG) of each body i resolved in the inertial frame FI . The velocities are summarized by the twist VT

i =
[

RωωωT
i IvT

i
]

in a
mixed representation, where the angular velocity Rωωω i of each body i is resolved in a body fixed reference frame FR, whereas the
velocity Ivi is again resolved in the inertial frame.

The task of the forward kinematics of the mechanism is to express the system twist VT =
[
VT

1 . . . VT
N
]

as a function of the
generalized coordinates q ∈ Vδ and velocities q̇. In case of the Delta robot, q corresponds to the arm angles of the upper part of
each limb and the rotation angle of the telescope bar. As a starting point to analytically express the system twist V the velocity
constraints

0 = G(z)V, (1)

arising from the joints, are taken into account and directly solved with the orthogonal complement to obtain

V = P
[
−Ḡ−1

1 Ḡ2
I

]
q̇ = Fq̇, (2)

where I denotes an identity matrix of dimension δ and z the orientation and position of all bodies. A permutation matrix P to sort
the elements of the twist V = PV̄, such that the δ independent entries are the last ones of V̄, is introduced to yield a partitioned
velocity constraint matrix Ḡ =

[
Ḡ1 Ḡ2

]
= GP. To solve the forward kinematics for a PKM on position level in general iterative

methods or numerical integration should be used, whereas for the Delta robot a closed solution z = f(q) can be found.

3 Dynamics

The equations of motion (EOM) for a single body MiV̇i +CiMiVi = Wact
i +Wgrav

i , where Mi = diag(ΘΘΘi,Imi) denotes the mass
matrix, Ci = diag(Rω̃ωω i,0) and Wact

i , Wgrav,T
i =

[
0T mi IgT

]
the wrenches regarding actuation and gravitation are summarized to

obtain the EOM of the assembled system

MV̇+GTλλλ =−CMV+Wact +Wgrav. (3)

The Lagrange multipliers λλλ are in particular the joint reaction wrenches due to the velocity constraints (1) of the joints. With the
time derivative Ġ(z,V)V+G(z)V̇ = 0 of the velocity constraints (1) the well known equation system

[
M GT

G 0

][
V̇
λλλ

]
=

[
−CMV+Wact +Wgrav

−ĠV

]
(4)

has to be solved for the unknowns V̇ and λλλ , as shown in [1], [3].

164



4 Inverse Dynamics combined with Constraint Force Analysis

To additionally obtain the required motor torques τττ besides the joint reaction forces λλλ within the same calculation step servo
constraints [2] are added to the velocity constraints (1) to obtain a general, affine Pfaffian form

GextV = ˙̄q with Gext :=
[

G
Gq

]
, ˙̄q :=

[
0
q̇

]
. (5)

In case of the Delta robot, the corresponding entry of the angular velocity of the upper body of each limb is constrained to be
equal to the given motion q̇ and analogously for the motor of the telescope bar. A combination of the EOM (3) with the time
derivative of the extended velocity constraint matrix (5) yields

[
M GT

ext
Gext 0

][
V̇

λλλ ext

]
=

[
−CMV+Wgrav

−ĠextV+ ¨̄q

]
with GT

extλλλ ext = GTλλλ +GT
qτττ, (6)

where the extended Lagrange multipliers λλλ T
ext =

[
λλλ T τττT

]
include the necessary actuator torques τττ for the given motion q. A

comparison between (4) and (6) reveals that Wact =−GT
qτττ holds.

Additionally the extended velocity constraint matrix Gext is a regular, quadratic, full rank matrix and hence invertible, whereas
G is not quadratic. A numerical advantage is the sparsity of the extended velocity constraint matrix Gext, which can be exploited
to efficiently solve the two equations within (6) separately. At first the forward kinematics problem

GextV̇ =−ĠextV+ ¨̄q. (7)

is solved for V̇ with given ¨̄q. Then the extended Lagrange multipliers λλλ ext are obtained by solving

GT
extλλλ ext =−MV̇−CMV+Wgrav. (8)

A combination of (7) and (8) yields the analytic solution

λλλ = G−T
ext
[
MG−1

ext(Ġext(z,V)V− ¨̄q)−CMV+Wgrav] . (9)

However it is computationally more efficient to subsequently solve (7) and (8) using (sparse) linear algebra solver instead of
computing the numerical inverse.

5 Conclusion, Example and Outlook

A main advantage of this absolute coordinate formulation is that allows to deal with zero entries of the mass matrix M, whereas
this inverse matrix notably appears two times within the classical solution λλλ = (GM−1GT)−1[ĠV+GM−1(−CMV+W)] as
derived from (4) in [1]. Due to the mixed formulation the mass matrix M is additionally purely diagonal with constant entries.
While the classical solution presumes a regular mass matrix, formulation (9) allows to have zero entries of M and this is in
particular important when model data is not available or cannot be obtained from any identification procedure. As an example
regarding the Delta robot, the presented method enables to set the moment of inertia along the longitudinal axis of the upper body
of each limb to zero. This still yields the exact results of the dynamics model. Furthermore the inertia along the longitudinal axis
of the of the rods of each limb can be set to zero, if their effect on the dynamics model shall be neglected, resulting in a simplified
model that consequently differs from the original model. In general the user can set any desired inertia entry to any value.

One benefit of the presented methods is that it boils down to solving the uniquely determined equation systems (7) and (8). A
further numerical advantage is the sparsity of the coefficient matrix Gext, which allows to use tailored sparse linear algebra meth-
ods for large systems while the numerical inverse is computationally quite expensive. Hence a massive improvement regarding
computation time of the sparse equation systems over the dense ones in C++ and Matlab is supposed. A comparison of the
behavior of the different solvers for dense and sparse equation systems of the "Eigen" package in C++ will be presented to verify
the numerical advantage.
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EXTENDED ABSTRACT

1 Introduction
Bond graphs are a widely used graphical formalism for representing dynamic systems, which may encompass multiple energy
domains, in a uniform fashion, using a small set of ideal elements [1]. Prior to the appearance of our 2018 paper [2], the most
advanced methods for representing multibody systems in a concise bond-graph form were based on generalized momentum, using
the so-called IC bond-graph element, and these were limited to holonomic systems. In [2] we introduced a bond-graph-compatible
momentum method for nonholonomic systems, based on Kane’s equations [3], but it was limited to scleronomic systems. In
this paper we extend our momentum method to incorporate systems with external time-varying constraints, and we find that this
momentum method is partially Hamiltonian (to be defined below). We also introduce a velocity-based method that is partially
Lagrangian (also to be defined below). Finally, we introduce a generalization of the IC bond-graph element, the nonholonomic or
NIC bond-graph element, and exhibit bond graphs for our nonholonomic methods.
Kane’s formulation is used in the development, because it can provide concise, matrix-based descriptions of multibody systems
[4]. The methodology here differs from [4] however, in that it makes no assumptions about the kinematic formulation, other than
that a set of partial velocity vectors describing the system is available. For the greatest generality, we begin with particle systems,
and then specialize the results to systems of rigid bodies.

2 Assumptions and Formulation
We consider a simple nonholonomic system in an inertial frame, with all rheonomic constraints initially relaxed, making it
scleronomic. Therefore assume R generalized coordinates qr completely determine the positions of all particles in the frame,
and S generalized velocities fs completely determine the coordinate derivatives Pqr . S is the number of scleronomic degrees
of freedom for the system, and the number of nonholonomic constraints is R � S . The coordinate derivatives and generalized
velocities are related through the matrix equation

Pq D Qf ; (1)

where q and Pq are lengthR columnmatrices of coordinates and coordinate derivatives, f is a lengthS columnmatrix of generalized
velocities, and Q is an R�S matrix of rank S , a function only of the generalized coordinates q. After finding equations of motion
for the scleronomic degrees of freedom f, we will then apply Sc rheonomic constraints, leaving S � Sc degrees of freedom.
Initially we regard the system as a constrained collection of particles. The inertial velocity v of every particle in the system can
be expressed as

v D

�
@v

@fT

�
f ; (2)

where @v=@fT is a row matrix of partial velocity derivatives, each of which is a function only of the generalized coordinates q.
These are nonholonomic partial velocities, in Kane’s terminology. Each particle has a differential mass dm, and a differential
linear momentum dp, defined as

dp D vdm : (3)

3 Results Obtained for General Particle Systems
For the sake of space in this abstract, we will concentrate on the results for scleronomic particle systems. The full paper will
give additional results for rheonomic systems and for rigid body systems. Initially we find the traditional velocity form of Kane’s
equations as

APf C NDf D e ; (4)

where A is the system mass matrix given by (using Stieltjes integration over differential mass elements in space)

A �
ˆ

�
@v

@f

�
�

�
@v

@fT

�
dm ; (5)
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ND is the system gyrator matrix given by
ND �
ˆ

�
@v

@f

�
�
d
dt

�
@v

@fT

�
dm ; (6)

and e represents the total generalized impressed forces, e �
´

.@v=@f/ � dF , where dF is the per-particle impressed force vector.
By differentiation of the equation for A, it is obvious that

PA D NDC NDT
: (7)

Defining the generalized momentum column matrix p as p � Af, we then find the momentum form of Kane’s equations as a pair
of two equations:

Pp D eC NDTf ; (8)
f D A�1p : (9)

Using the kinetic energy function T , defined as

T .q; p/ � .1=2/pTA�1.q/p ; (10)

the second equation of the pair can be written as

f D @T

@p I (11)

this is what we call the partial Hamiltonian property. Using also the definition of ND from (6), we find

Oe � NDTf D
ˆ d

dt

�
@v

@f

�
� dp ; (12)

which has a straightforward per-particle interpretation. Although ND is uniquely defined, any matrix D that satisfies (7) and for
which Df D NDf will serve for ND in Eqs. (4) , (8) .
Finally we find a modified velocity form of Kane’s equations as

APf C
�

@ Op
@qT

�
Pq D eC Oe : (13)

where Op is generalized momentum as a function of q and f:
Op.q; f/ � A.q/f : (14)

The left side of (13) can also be written as POp D d .@T �=@f/ =dt , where T � is the kinetic co-energy function

T �.q; f/ � .1=2/fTA.q/f : (15)

This leads us to describe this form as partially Lagrangian. Equation (13) is believed to be a new result for nonholonomic
systems.

4 Conclusions

1 S 1
f

TF1
Pq

Q
S

Se W e

generalized
velocities

coordinate
derivatives

e
SR

0
S NIC

POp

T �
D .1=2/fTA.q/f

POp D
d
dt

�
@T �

@f

�
D APf C

@ .Af/
@qT Pq

S

Oe D DTf

Figure 1: Multibond graph of partially Lagrangian form

The Q; A, ND and D matrices defined above provide a com-
plete set of matrix parameters for nonholonomic multibody
systems, applying both to general particle and to rigid-body
systems. They are the parameters that characterize the NIC
bond-graph element, allowing concise bond graphs for non-
holonomic systems to be constructed, as illustrated in Fig. 1.
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EXTENDED ABSTRACT

1 Motivation

Soft robots, such as soft grippers, are a relatively new class of robots made of soft materials, namely silicon or plastic. They
exhibit various advantages. Indeed, their manufacturing processes, often relying on 3D printing, are inexpensive. Soft grippers,
which enter in the scope of the industry 4.0 development, grant flexibility to the tasks to be accomplished. For instance, the
same programming sequence making use of adequate force and torque sensors can be used for the grasping of objects of different
sizes and consistencies, as it can be the case in the food industry [1, 2]. The consequence is that almost no damage is done to
the manipulated parts. Moreover, in the context of human-robot collaboration, soft robots are safer to the user because of their
deformable nature and their lighter design.

The actuation of soft robots may rely on 3 different techniques. The first and most natural one is to make use of a linear actuator
on one or several points of the deformable structure to induce a motion. The second one relies on pressure and vacuum by
inflating or deflating deformable chambers inside the robot, enabling bending, for example. The third technique is to use a cable
going through the structure and attached to one or several key points, pulling the deformable robot in the desired direction.
Considering more specifically the case of a soft finger composed of phalanges, attaching a cable to the upper phalange and
pulling it produces the bending of the finger. The objective of this work is to develop numerical methods for the simulation of
such cable-actuated robots, as illustrated in Figure 1a. It implies several numerical challenges. For instance, an accurate cable
model, accounting for its extension and capturing the contact and friction phenomena inside the finger, must be developed. In
order to numerically approach the simulation of such flexible systems, a nonlinear finite element method (FEM) is often followed
thanks to its versatility. In this context, the cable is discretized into several elements, enabling the precise description of these
contact phenomena.

Nevertheless, it should be noted that, often, the need to discretize the cable into small elements is only needed in some key regions
which interact with the structure. This situation is comparable to the case of reeving systems, where small elements are needed
around the pulley, but larger elements could be used anywhere else. However, because the cable is moving around the pulley
with time, one is thus often constrained to work with smaller elements than needed along the whole cable in order to accurately
represent contact and friction happening between the pulley and the cable. In order to circumvent this difficulty, a popular option
is to work with an arbitrary Lagrangian-Eulerian (ALE) formulation [3, 4, 5].

2 Method

In an ALE formulation, the positions of some nodes of the finite element discretization remain fixed during the simulation, while
the cable is flowing through these nodes, inducing a mass flow, as it would be the case in an Eulerian formulation. However,
it also enables mesh motion, which is an advantage in the modeling of a cable-actuated finger. Indeed, the contact and friction
locations occurring due to the change of direction of the phalanges under the cable action are known a priori, as shown in Figure
1b, while the rest of the cable is contact-free. From a mesh point of view, these points are modeled using nodes of the cable which
are constrained to the finger where a flow of material occurs. The other nodes of the cable can follow the material particles, as
shown in Figure 1c.

Phalanges

Cable

(a) Soft cable-actuated finger.

Contact points

Cable

F

(b) Contact points between the cable and the
inside of the finger.

F

Moving node

Nodes fixed to the finger

Hinge and spring

(c) Numerical model of the finger.

Figure 1: Soft finger, occurrence of contact due to the cable actuation and associated numerical model.

In this work, an ALE formulation for a simple cable element is presented. Based on [6], it gives a continuous formulation
embedded in a consistent variational framework starting from the Dirichlet principle, which can be later discretized. The novelty
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consists in the addition of constraints to recover the equations of motion in a multibody set-up expressed in a Lie group formalism
[7, 8]. The global idea is to write the equations of motion in terms of a reference configuration that does not necessarily match
neither with the material nor the spatial configurations. In the resulting equations of motion two sets can be identified. The
first one represents the spatial motion problem, where the spatial location of material particles is tracked, whereas the second
set represents the material motion problem, where this time the material particle corresponding to a specific spatial location
is tracked. These two sets of equations give interesting features in a discretized context. For the spatial motion problem, a
residual force is nothing else than a classical body force commonly met in Lagrangian FEM. However, a residual material force,
emanating from the other set, can be understood as a force arising, noticeably, from a non-optimal mesh placement, meaning that
a vanishing material force represents an optimal material placement of the node. In other words, in this formulation, nodes which
are not materially nor spatially constrained will move to reach a global minimum of the potential energy.

3 Results

This ALE cable formulation is applied to a soft finger model. The problem consists in a finger where phalanges are assimilated
to rigid bodies linked by joints and torsion springs. The cable is attached to the last phalange and pulled from the other end, in
a similar fashion as in Figure 1c. In addition, the contact between the phalanges is modeled. This leads to obtain nonsmooth
equations of motion which are integrated using the nonsmooth generalized-α method [9, 10]. It must be emphasized that, in this
case, the cable is considered massless and that no friction develops between the cable and the phalanges. The modeling of these
effects will be subject of a future work.

It is shown that contact between the cable and the finger is captured by the introduction of a bilateral constraint and the points
at which contact occurs see a flow of mass of the cable, as expected. Moreover, contact between the phalanges is precisely
accounted for. This model is a promising first step towards a multibody representation of a soft finger.

4 Conclusion

As a conclusion, the ALE formulation proposed in this work can be successfully applied to cable modeling, noticeably in a
soft robot actuation context. Compared to [3, 4, 5], the procedure starts directly from the variational principle and leads to the
equations of motion in a systematic manner. The method also builds on the work from [6] by the addition of constraints and the
inclusion of this formulation within a multibody framework in a Lie group formalism.
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EXTENDED ABSTRACT 

1 Introduction 

To verify the motion of a system, velocities are frequently measured with a measurement device. In the measured velocity data, 
rotational component and translational component is combined together. To calculate the angular component in a planar mo-
tion, just measured data at two points P and Q is enough to determine the angular velocity. In a three-dimensional case, in 
which the angular velocity is a 3*1 vector, velocity data at three points P, Q, and R is required to determine the angular veloci-
ty. Moreover, the accuracy of calculated angular velocity depends on the selection of three points.  In this paper, the selection 
scheme for three measuring points is reviewed.  

 

2 Measured Data in a Washing Machine 

As shown in Figure 1, several points are selected and velocities are measured at these points, in which the measured velocity is 
combined both rotational component and translational component.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Measured data in a washing machine 

 

3 Rotational Component and Translational Component in the Measured Data 

When three velocities at three points (P, Q, and R)  are measured as shown in Figure 2, the relation between two points P and R 
can be written as Equation  (1). Since the coefficient matrix in Equation (1) is singular, it is required one more equation to 
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determine angular velocity uniquely. One more equation can be obtained from the velocity relation between P and R, as shown 
in Equation (2).  
If we choose the first and the second equation from Equation (1) and the third equation from Equation (2), then the equation 
for angular velocity become equation (3). Then, what will be the best choice for three points P, Q, and R? If three points are 
selected on a straight line, then the coefficient matrix in Equation (3) becomes singular, which is the worst case and should be 
avoided. When two lines PQ and PR are almost perpendicular, it’ll be the best choice to ensure the coefficient matrix to be 
nonsingular.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Three points P, Q and R in a space 
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EXTENDED ABSTRACT

In the last few years, engineers have been increasingly faced with the challenge of solving formidable optimzatzion andcontrol
tasks for more an more complex simulation models. For this reason, there is a growing demand in both research and industryto
develop efficient and reliable algorithms to cope with thesetasks and to design optimal processes.
In this contribution we propose an iterative algorithm, based on the adjoint gradient computation in [1], for solving time optimal
control problems in multibody dynamics.

The dynamics of constrained multibody systems is commonly described by a set of differential-algebraic equations of the form

M(qqq(t))q̈qq(t)+CCCT
qqq (qqq(t))λλλ(t) = fff (qqq(t), q̇qq(t),uuu(t))

CCC(qqq(t)) = 000,
(1)

whereqqq(t) ∈ Rn denotes the vector of generalized coordinates,uuu(t) ∈ Rm the vector of control inputs andλλλ (t) ∈ Rl the vector
of Lagrange multipliers.M(qqq(t)) is the mass matrix of the system andfff (qqq(t), q̇qq(t),uuu(t)) is the vector of applied and gyroscopic
forces. The constraint equations are collected inCCC(qqq(t)) andCCCqqq(qqq(t)) = ∂CCC/∂qqq denotes the associated constraint Jacobian. For
given initial conditionsqqq(t0) = qqq0 andq̇qq(t0) = vvv(t0) = vvv0 the equations of motion in Eq. (1) can be solved numerically for qqq(t),
vvv(t) andλλλ (t) by applying a DAE-solver for index three equations. Now we are looking for control inputsuuu(t), which minimize
the cost functional

J =

∫ t f

t0

[
1+ Π(qqq(t),vvv(t),uuu(t))

]
dt. (2)

HereΠ(qqq(t),vvv(t),uuu(t)) denotes a penalty function in order to introduce constraints onqqq(t), vvv(t) anduuu(t). The final timet f is
considered free, and we claim the system to satisfy a set of final conditions of the form

φφφ(qqq(t f ),vvv(t f ), t f ) = 000, φφφ : Rn ×R → Rr. (3)

In order to circumvent the solution of a two-point boundary value problem, which can be derived from Eq. (1), Eq. (2) and Eq. (3)
by using Pontryagin’s minimum principle, we apply an iterative solution strategy by computing the gradient of the cost functional
with respect to the control inputs. As a first step to compute an update of the final time and the control history, we solve the
adjoint system:

ẇww(t) = −ΠT
qqq −Gppp(t)−CCCT

qqq µµµ(t)− (CCCqqqvvv)Tqqq σσσ(t) CCCqqq ppp(t) = 000

d
dt

(M ppp(t)) = −ΠT
vvv − www(t)− fff Tvvv ppp(t)−CCCT

qqq σσσ(t) CCCqqqwww(t) = 000,

(4)

in which we introduced the adjoint variablesppp(t),www(t)∈ Rn, µµµ(t),σσσ(t)∈ Rl and the abbreviationG(t) = fffTqqq −
(
CCCT

qqq λλλ
)T

qqq
−(M v̇vv)Tqqq .

The matricesΠqqq(t) = ∂Π/∂qqq, Πvvv(t) = ∂Π/∂vvv, fff qqq(t) = ∂ fff /∂qqq, fff vvv(t) = ∂ fff/∂vvv must be computed from a forward solution of
Eq. (1). With the right boundary conditionswww(t f ) = 000 andppp(t f ) = 000, Eq. (4) can be solved backwards in time. Beside Eq. (4),
we introduce a second adjoint system to relate the control variations with the final conditions in Eq. (3):

Ẇ(t) = −GP(t)−CCCT
qqqM(t)−

(
CCCT

qqq vvv
)T

qqq
S(t) CCCqqqP(t) = 000

d
dt

(MP(t)) = −W(t)− fff Tvvv P(t)−CCCT
qqqS(t) CCCqqqW(t) = 000,

(5)

where we have introduced some more set of adjoint variablesP(t),W(t) ∈ Rn×r andM(t),S(t) ∈ Rl×r. The final values can be
computed from:

(
φφφT

qqq −W
)∣∣∣

t f

= 0 and
(

φφφT
vvv −MP

)∣∣∣
t f

= 0. (6)
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The updates of the final timet f and of the control historyuuu(t) are then given by

δ t f = −κα
(

1+ Π(qqq(t f ),vvv(t f ),uuu(t f ))+ ξξξTφφφ (qqq(t f ),vvv(t f ), t f )
)
, and δuuu(t) = −κ

(
ΠT

uuu + fff Tuuu ppp(t)+ fffTuuu P(t)ξξξ
)
. (7)

Herein, the parameterα serves for scaling and the numberκ denotes the step size of the updates.ξξξ ∈ Rr is a vector of multipliers
in order to combine both adjoint systems in Eq. (4) and Eq. (6)and to reduce the cost functional in Eq. (2) and the error in Eq. (3)
within each iteration simultaneously.

As an example, we consider a robot, shown in Fig. 1, consisting of three robot arms and a particle mass at the end of the kinematic
chain. We describe the system by 14 redundant generalized coordinates. We are interested to control the torquesu1, u2 andu3 in
the joints that minimize the end time. The results are summarized in Fig. 2.
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EXTENDED ABSTRACT

1 Introduction

The Lagrangian and Hamiltonian mechanics utilize generalized coordinates (GCs), which can be any set of variables suitable
to fully describe the configuration of a mechanical system. A set of GCs is not unique: there are infinitely many sets of GCs,
which are equally valid for describing the system’s dynamics from the theoretical point of view. However, from a numerical or
computational point of view, there can be differences. For simple systems with a few degrees-of-freedom (DOF), it is expected
that there will be no discernible differences in the choice of a set of GCs. For such systems, the computational efficiency is
also not an issue. However, for complex multi-body systems with a large number of DOF, the efficiency and computational time
required to perform the analysis can vary greatly depending on the selected set of GCs.

Efficient formulation of dynamic equations was recently discussed in [1, 2]. However these papers did not address the effect of
different sets of GCs on the solution of dynamic equations. In addition, there is a gap in the literature dedicated to finding optimal
sets of GCs that lead to the numerical solution of differential equations with minimal error within the shortest simulation time.
To the best of the authors’ knowledge, there are no general qualitative rules for selecting the optimal set of GCs. It is possible
that there is a procedure, yet to be discovered, which helps to identify the optimal set of GCs for each system. As a result, there
is a need in modern engineering for deeper investigations of the apparent freedom of choice of GCs for system description. In
this work, our main motivation is to investigate the influence of a choice of GCs on the numerical solution of dynamic equations.
The main objective and novelty of this paper is to find a pattern for the dependence of simulation error and time on the selected
set of GCs. Another objective is to find the optimal set of GCs for a single-link spherical pendulum (considered as a test system).

2 Kinematics of the Spherical Pendulum

As our test system, we consider a single-link spherical pendulum which is symmetrical with respect to the rotation about its
axis, Fig. 1a. We specifically chose the spherical pendulum because its motion is three-dimensional. Due to rotational symmetry
around its own symmetry axis, only two angles are required to fully specify the configuration (orientation) of the pendulum in
our model. The Euler angles were generalized to rotations with respect to non-orthogonal axes in [3]. The generalized Euler
angles are also called Davenport angles [4]. In this work, two Davenport angles will be denoted as q1 and q2 and will be used as
GCs. In the following, we will consider two cases for the set of GCs. In the first case (Case I), we assume that the axis of the
first GC q1 is aligned along the global axis X , while the axis of the second GC has an arbitrary initial direction with respect to
the global axes, Fig. 1b. In the second case (Case II), it is assumed that the axis of the first GC q1 has an arbitrary initial direction
with respect to the global axes, while the second GC q2 has its initial direction aligned with respect to the global axis Y , as shown
in Fig. 1c. In both cases, intrinsic rotations are assumed, so that the axis of q2 is influenced by the rotation q1. Also, in both
cases, kinematics depends on two angular parameters: η and ε , Fig. 1. Different sets of GCs, with the corresponding differential
equations of motion, are obtained by varying these two parameters.
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Figure 1: Schematic diagrams of the spherical pendulum (a), its kinematics with coordinate frames, angular parameters, and GCs
for the Case I (b) and Case II (c). ϕ is the angular parameter which depends on η and ε .

3 Simulations

Simulations were performed to investigate the influence of a set of GCs on the dynamic behavior. By using the Lagrangian
formalism and the Symbolic Math Toolbox™ of MATLAB, a system of two coupled second-order differential equations was
automatically generated for the link motion in terms of the GCs q1 and q2. These equations contain the parameters η and ε . By
specifying the number of intervals N ∈ N and the angular step size ∆ = π/N, the range of variation for η is chosen as η = i∆,
i = 1,2, . . . ,N−1 ∈N. Similarly, the range for ε is ε = i∆, i =−N,−N +1, . . . ,N−1 ∈ Z. The number of steps used to vary the
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parameters was chosen to be N = 20. The analytical solution of a mass-point spherical pendulum oscillation, expressed in the
spherical coordinate frame, was also obtained as a baseline case. For each set of GCs, the root-mean-square error (RMSE) Er
with respect to a baseline case was computed. Simulation time τ was also recorded. Two different initial conditions (ICs) were
considered. The first IC (denoted by IC1) corresponds to the situation where the initial values of GCs are nonzero, i.e., q1 6= 0,
q2 6= 0, while the initial values of the generalized velocities (GVs) are zero, i.e., q̇1 = q̇2 = 0. The second IC (denoted by IC2),
assumes that the initial values of the GCs are zero q1 = q2 = 0, while the initial values of the GVs are nonzero.

Figure 2: The RMSE Er for the Cases I-II with two different ICs. Note that the scaling of color bars is different.

Figure 3: Simulation time (log10(τ/τr)) for the Cases I-II with two different ICs. Note that the scaling of color bars is different.

4 Results and Conclusions

The RMSE Er of the simulations for the Cases I-II and the two different ICs are shown in Fig. 2. Each sub-figure displays Er
as a function of the parameters η and ε . An orthogonal set of GCs do not necessarily result in the smallest Er. This might be
explained by the different degrees of coupling and interplay of simulation errors in the dynamic equations of motion. The results
for the simulation times τ are shown in Fig. 3, where τr is the simulation time of the baseline case. Here we can clearly see
that the orthogonal set of GCs (η = π/2 and ε = ±π/2 for Case I, η = π/2 and ε = 0 (or ε = π) for Case II) leads to a faster
simulation. These observations are valid for two cases and for both ICs.

Different sets of GCs (generalized Euler angles) have been considered from the accuracy point of view and the computation time.
It has been shown that a set of orthogonal GCs (Davenport angles) allows a fast integration of the equations of motion. However,
the choice of orthogonal Davenport angles do not necessarily result in the minimum gross simulation error. In summary, a set of
GCs affects the system scope, simulation error and simulation time. The optimal set of GCs that minimizes the RMSE does not
simultaneously minimize the simulation time and vice versa.
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EXTENDED ABSTRACT 

1 Introduction 

Nowadays, multibody codes are ubiquitous and can solve very general problems. A common way to reduce computational effort 
is to reduce symbolic terms [1]. However, due to their generic formulation, often they do not consider special properties of the 
system or of its target accuracy requirements, thus leading to many unneeded terms which unnecessarily slow-down 
computational efficiency. When developing fast codes, e.g., for microprocessor controls, users hence often develop task-specific 
formulations, seeking to remove terms which are deemed not to be relevant, but without a systematic procedure for their 
identification. While symbolical code generation can catch a large number of unnecessary computations, there are some 
additional effects which lead to substantial effort reduction which are not "seen" by symbolical code processors. These effects 
are (1) single bodies or subsystems move in sub-groups of SE(3), (2) inertia tensors feature special properties such as symmetry 
or negligible moments of inertia, and (3) some terms to not contribute substantially to precision as their respective mass effects 
are negligible compared to neighbor terms. This paper analyses the effects of such simplifications for a sample mechanism – the 
3R1T parallel structure – featuring all characteristics listed above. The investigation shows that all three types of effects lead to 
reduction of computational effort, with diminishing impact. While the analysis is based only on a single case study, it can be 
assumed to be generally applicable and thus to shed some light onto where efficiency increases can be achieved. A fully 
automated procedure would have to be able to identify all these three effects and is not developed here. 

2 Case Study: The 3T1R parallel platform 

The topology and mass properties of the regarded case-study 3T1R mechanism are shown in Figure 1. The system is a 4 degree-
of-freedom "lower-mobility" mechanism with 4 branches and four driving pair at the base as revolute joints. 
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Figure 1: Kinematic structure and mass properties of the multibody system for the case study (3T1R mechanism) 

 

3 Stages for reduction of computational effort 

Due to its special design, the moving platform moves as 3D translation (X, Y, Z) and a rotation (γ) about the global Z axis and 
distal transversal links of the parallelogram undergo only pure 3D translation. The equations of motion [2] for the platform are: 

Inverse dynamics: ( )1 ( ), eq b q q Qτ −  = + − B M  ;  4τ ∈ , 4 4×∈B  , 4 4×∈M  , 4b∈ , ( ) 4eQ ∈ .                    (1) 

Direct dynamics:  ( ) ( ), ,q b q q Q q q+ =M               ;   4Q∈ , [ ]T 4, , ,q X Y Z γ= ∈ .                                                  (2) 

Where q , M , b , Q , Q(e)  are the generalized coordinates, mass matrix, centrifugal and Coriolis forces, applied forces, and 
applied forces without actuator torques τ , respectively, and B is the Jacobian mapping actuator rates to generalized velocities.  
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Reduction of computational effort involves three stages: 

Stage 1: Recognizing bodies moving within sub-groups of SE(3) and cancelling corresponding not-needed terms.  

Stage 2: Recognizing special inertial effects (symmetry, negligible moments of inertia). 

Stage 3: Recognizing terms which are negligible due to small-mass or small-motion effects; this can only be done for sample 
motions that are assumed to be representative. 

The special sub-motion properties in this case are: (a) special motion 3T1R of the platform, (b) pure translation of distal 
transversal links of the parallelograms, and (c) pure rotation of the driving cranks. The special inertial effects are the slim nature 
and approximate symmetry of the coupler bars of the parallelogram with respect to rotations about axes normal to the bars.  

For the third stage, an empirical algorithm to neglect terms was developed consisting of the following steps: (1) sample the 
simulation at n time points (here n=100000); (2) at each time point, sort terms according to the size of their numerical value; (3) 
cut-off terms whose contribution is below the target accuracy, counting the number of time points where each term is neglected; 
(4) sort neglected terms over all n time points according to the number of neglections at time points; (5) start globally removing 
neglected terms in the order from highest to lowest number of time-point neglections and check for each such overall neglection 
the accuracy of the whole simulation.  Continue until overall accuracy is trespassed. This computation takes several hours, but 
is only a preprocessing done once for a given mechanism, while the resulting equations then run at optimal CPU time while 
maintaining the target accuracy.  

The method can be also applied to redundant coordinates if the subspace motion properties are known. Due to lack of space, 
only the main ideas can be described; the co derivations are being prepared for a paper form. 

4 Results 

Table (c) in Figure 2 shows the achievable reduction of computational effort and incurred error with respect to an ADAMS 
simulation for a sample motion as represented in Figure 2 (a) and (b) (input and output, respectively). Error is measured as the 
maximal absolute difference between the actuator torque τ1 computed in the reduced model and computed in ADAMS throughout 
the whole simulation. Stage 0 is the reference including all terms in a full 3D model without expression reductions (such as in a 
general multibody code). One can see that sub-group motion reduction (Stage 1) contributes to approx. 30% of total reduction 
(without generating errors), while special inertia effects (Stage 2) contribute to another 11% (with only a slight error of 0.42%). 
Allowing for errors in the final computations renders in this case reductions of computational efforts of another 1%-7%.  

     
                        (a) Input angles                                        (b) Output values                                        (c) Reduction stages 

Figure 2: Simulation and reduction information of 3T1R mechanism 

 

5 Conclusion, Outlook, Acknowledgements 

While the present analysis was performed only for a single case-study, it is believed that the sources of effort reduction may be 
comparable for other mechanisms with similar simplification effects. An important component for the automatic simplification 
is the automatic detection of SE(3) sub-group motion for individual bodies or substructures embedded in a general spatial mech-
anism, as well as the generation of representative trajectories of a sample application. This is planned for future research. This 
work was partially funded by Zentrales Innovationsprogramm Mittelstand (ZIM) under project number ZF4047825RP9.   
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EXTENDED ABSTRACT

1 Background and contribution

In the design and development of many complex multibody systems researchers have to consider trade-off between various
system attributes such as sizing, performance, comfort or cost. Computational optimization methods are almost always required
for most design tasks and the gradient information of an objective function is heavily exploited in the generation of sensitivities.
One of the most accurate and computationally efficient methods of calculating derivatives of performance measure and state
variables with respect to design variables are based on the mathematical models of multibody system (MBS) stated as a system
of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). In optimal design of MBS, an implicit
dependency exists between state and design variables. One major model-based technique is the adjoint variable method. The
approach tends to generate a system of adjoint DAEs, which is usually difficult to solve backward in time [1, 2, 3].

An abundance of well established methods for the efficient solution of equations of motion (EOM) is available in the literature.
Some of them, expressed in joint coordinates, give rise to fast sequential or highly-parallelizable algorithms, e.g. [4], [5]. On
the other hand, a rather weak link exists between the mentioned efficient formulations and their full exploitation in the adjoint
variable method. This paper aims at formulating a method for systematic reduction of the adjoint DAE system corresponding
to the constrained Hamilton’s EOM to a system of ODEs by introducing a minimal set of adjoint variables. In consequence,
a backward adjoint problem might be solved by a standard ODE integration routine, in which the intermediate quantities taken
from the joint-based forward dynamics formulation are heavily reused.

2 Problem statement

Let us consider a set of constrained Hamilton’s canonical EOM, where the algebraic constraints imposed on the MBS have
the form ΦΦΦ(q) = 0, and q denotes a vector of generalized coordinates. The time derivative of constraint equations is equal to:
Φ̇ΦΦ = CV = 0, where C stands for the constraints Jacobian matrix and V refers to the spatial velocity vector. Moreover, absolute
velocities for all bodies in a system can be expressed as a stacked vector, which is a product of allowable motion subspace H and
a vector of joint velocities βββ , i.e.: V = Hβββ [5]. This is an implicit representation of the constraints Φ̇ΦΦ = 0. Since βββ is a vector of
unconstrained variables for open-chain systems, the following relation also holds: CH = 0. The equations of motion in absolute-
and joint-based formulation have the following form:

MV+CT σσσ = P∗, CV = 0 (1)

Ṗ∗ = Q+ ĊT σσσ . (2)

p̂ = HT MHβββ = M̂βββ (3)
˙̂p = HT Q+ ḢT MHβββ (4)

The symbols M and M̂ denote a mass matrix, formulated in absolute and joint coordinates, respectively. The quantity σσσ can be
interpreted as a constraint force impulse. This means that the following condition is fulfilled σ̇σσ = λλλ , where λλλ is a vector of con-
straint loads at each joint. Moreover, P∗ and Q denote augmented momenta and spatial force vectors, respectively. Subsequently,
the quantity p̂ is the projection of P∗ onto the subspace H, which can be interpreted as a joint–space momentum. A prevalent
task arising in the field of optimal design or control of MBS is to minimize the following performance index:

J =
∫ t f

0
h
(
t,q,V,b)dt +S

(
q,V

)
, (5)

where b denotes a vector of design parameters or a set of discretized input functions. The second term in eq. (5) is a terminal
cost, suitable for prescribing a particular state of the system at the terminal time t f .

3 Formulation of the adjoint method using independent costates

The first step in deriving the adjoint method is to augment the performance measure by appending eq. (5) with underlying system
of equations premultiplied by arbitrary Lagrange multipliers:

J =
∫ t f

0

[
h+ηηηT (P∗ −MV−Cσσσ)+ξξξ T

(Ṗ∗ −Q− Ċσσσ)− µµµT Φ̇ΦΦ
]

dt +S. (6)
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The multipliers ηηη ,ξξξ ,µµµ are often referred to as adjoint or costate variables. By taking a total variation of the extended performance
measure (6) and requesting necessary conditions for the extremum of a functional yields an adjoint system of DAEs [1]:

ξ̇ξξ = ηηη , Mη̇ηη +CT µ̇µµ = RA, Cη̇ηη = −2Ċηηη − C̈ξξξ (7)

supplied with boundary conditions for ξξξ (0)
,ηηη(0),µµµ(0). A closer look at eqs. (1) and (7) reveals numerous analogies, which we

aim at exploiting. First, let us establish spatial relations between absolute–coordinate adjoint variables. In the paper, we argue
that the following relations hold: ξξξ = Hc and ηηη = He + Ḣc, where c and e denote vectors of independent costate variables.
The derivative of the latter relation yields a crucial transformation, which can be interpreted as an implicit representation of the
constraints imposed on the system (7). It can be exploited to project a system of DAE (7) onto the subspace H yielding the costate
(adjoint) system in independent coordinates:

ċ = e,
(

HT MH
)

ė = HT
(

RA −2MḢe−MḦc
)

⇒ M̂ė = R∗
A. (8)

Equation (8) may be solved backwards in time for the unknown variables c and e. The integration is initialized with the values
evaluated from their absolute–coordinate counterparts ξξξ (0)

,ηηη(0). Once the costate variables are computed, the variables can be
utilized to efficiently and reliably compute the gradient of the performance measure (5).

4 Preliminary results and conclusions

This paper extends the scope of our previous work [1] by deriving spatial relations between adjoint variables linked with Hamil-
ton’s canonical EOM. Consequently, by reframing explicit constraints imposed on the adjoint system into their implicit coun-
terparts, we introduced the so-called joint–space costate variables. As a result, the DAE describing the adjoint system was
transformed into an unconstrained first–order system of differential equations. ODEs are usually much simpler and more conve-
nient to handle, while integrating joint variables and do not raise constraint violations. We present preliminary results for a simple
test case where a pendulum moves in a gravitational field with two torsional springs attached to its fixture (c.f. fig. 1). The goal
is to find a static equilibrium conditions by selecting suitable neutral lengths of the springs. This can be stated as an optimal
design problem, and fig. 2 displays the values of the adjoint variables at the initial step of the procedure. The independent costate
variables remain consistent with their absolute–coordinate counterparts derived in ref. [1].

Figure 1: The layout of the pendulum with torsional
springs attached to a Hooke joint.
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Figure 2: The adjoint variables recreated from the joint costate
variables (solid lines) compared with their absolute–coordinate
counterparts [1] (dots).
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EXTENDED ABSTRACT

1 Introduction

Problems of kinematics are, in many cases, characterized by a set of nonliner algebraic equations that have to be constructed
and solved at each time step. The procedure can be computationally time consuming so that it is interesting to develop suitable
methods to improve the simulation efficiency. Moreover, parametrization of finite rotations is an essential issue in multibody
kinematics and dynamics. Among the available options, the concept of quaternions shows some interesting properties to describe
body rotations, especially when dealing with interpolation.
The main idea is to solve in a preliminary step the kinematics of spe-
cific subsystems, i.e. to pre-compute the position and the orientation of
important bodies of the subsystem, in terms of a set of independent pa-
rameters whose number corresponds to the number of degrees of free-
dom of the subsystem. The pre-computation leads to a look-up table
from which the situation of each body, i.e. its X, Y, Z coordinates and
the quaternions describing its orientation, can be computed by interpo-
lation. The size of the table and the distribution of the pre-computed
points are also addressed in this study: with an optimal distribution,
the required accuracy can be obtained with a minimal size of the table,
and consequently with lower memory requirements. The main motiva-
tion of the work is the efficient representation of suspension kinematics
(see Figure 1) for the purpose of vehicle dynamics problems. It is par-
ticularly relevant for suspensions, whose up and down motion can be
interpolated from only one parameter. For example, authors of [1] use
two dimensional analytical functions to express suspension kinematics
and then solve problems of vehicle dynamics.

Figure 1: Scheme of a double wishbone sus-
pension

2 Spline, B-spline and quaternion spline interpolation

Generally, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise low degree poly-
nomial called a spline. Spline interpolation provides lower interpolation error [3] and also avoids the problem of Runge’s phe-
nomenon, in which oscillation can occur when interpolating using high degree polynomials. B-spline as another spline function
is a piecewise polynomial function. However, B-spline function is defined as a linear combination of control points pi and
basis functions, which is also the origin of its name – B-spline. The function has several useful properties such as local support
property; changing pi affect the curve in the parameter range xi < x < xi+n [4].

The base functions Bk
i (t)’s are defined by the following recurrence relation [5]:

Bk
i (t) =

t − ti
ti+k−1 − ti

Bk−1
i (t)+

ti+k − t
ti+k − ti+1

Bk−1
i+1 (t), where B1

i (t) =
1 ti ≤ t ≤ ti+1,
0 otherwise. (1)

The B-spline quaternion curve with a cumulative basis form is formulated as [5]

Q̂(t) = q̂
B̃k

0(t)
0

n+1

∏
i=0

(q̂−1
i−1q̂i)

B̃k
i (t), where B̃k

i (t) =
n+1

∑
j=i

Bk
i (t). (2)

where the control points q̂i are precomputed so as to reproduce a given sequence of data quaternions Q̂i (i = 0, 1, ... n). We
assume k = 4, so C2 continuity is achieved [5].

3 Obtained results and their discussion

Every rotation in a three-dimensional Euclidean space can be parametrized by two quantities: a unit vector e indicating the
direction of an axis of rotation, and the angle θ describing the magnitude of the rotation about the axis. Assuming 3 body
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configurations i, i+ 1 and i+ 2, we get 2 relative angles (θi,i+1 and θi+1,i+2), 2 rotation axes (ei−1,i and ei,i+1), and 1 so-called
axis difference φi defined as the angle between ei−1,i and ei,i+1. Both, θ and φ measure the variation between successive body
configurations and play an important role in the precision of the interpolation.

The interpolation methodology was studied on a double wishbone car suspension (Figure 1) whose kinematic solution was
obtained from a solver based on the Cartesian coordinates approach. The precision of the interpolation was measured by angle
error θex,in, which is defined as an angle between exact and interpolated orientation.

Different input data for the interpolation were generated and it turned out that the precision is not determined only by the values
of θ and/or φ , but also by their smoothness. To demonstrate this phenomena the look-up table data generation was performed
and a threshold was imposed in the same time for θ and φ . The kinematics had to be recomputed to fulfil desired θ0.2 and
θ0.01, which are angle distances obtained by converting θ to a smoothing spline with a tuning (or smoothing) parameter 0.2 and
0.01 [6]. Figure 2 shows θ , θ0.2 and θ0.01, and Figure 3 shows the achieved angle errors of the interpolation while using look-up
tables corresponding to θ , θ0.2 and θ0.01, respectively.
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4 Conclusion

This paper deals with the usage of quaternion interpolation in
the multibody kinematics, which allows to reduce the compu-
tational costs for more complex dynamic analyses. The para-
metric study showed the importance of the continuity of input
data. The smoother the input data are the lower the angle er-
ror is achieved. However, look-up table size remains the same.
This proves the importance of the right choice of input data.
Presented methodology is further implemented in EasyDyn
for a testing simple vehicle (Figure 4). It is further planned
to use the introduced approach for fast dynamical simulations
during optimization processes needed in the Formula SAE de-
velopment.

Figure 4: Ilustration of vehicle dynamic model in EasyDyn
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EXTENDED ABSTRACT

1 Introduction

Power plants and big industrial or science facilities like the European Organization for Nuclear Research (CERN), are often
confronted with very specialized automation problems in complex environments for their laboratories, experiments ortest rigs.
These frequently lead to specific requirements that do not allow the usage of standard industrial robots. Thus, a design problem
with almost no restrictions on the actual robot topology, but very hard requirements concerning other parameters like workspace,
allowed robot space, and accuracy has to be solved.

This paper presents an approach to this problem by setting upa non-linear optimization algorithm. The optimization departs
from a tentative serial robot topology with consecutive rotational joints with parallel rotation axes. The tentative topology should
have a higher degree of freedom than the expected optimal solution. Then, the algorithm will optimize the degree of freedom,
the position accuracy or error propagation and the joint torques, while reaching the desired end-effector position, avoiding self
collisions and collisions with its surrounding. The algorithm will be demonstrated by optimizing the design of a surface inspection
robot for Radio Frequency Cavities as used in the Large Hardron Collider (LHC), the Linear Accelerator (LINAC) or the Future
Circular Collider (FCC), see figure 1.

2 Requirements for a Cavity Inspection Systems

Radio Frequency Cavities are performing the linear acceleration of charged particles in straight sections of accelerator machines
and thus make up one of the key elements in a collider complex.The cavities structure and geometry define their specific radio-
frequency at which the strong electromagnetic field, created inside the tubes, oscillates to accelerate each particle passing through.
The inner surface quality of the cavities is critical to withstand the high energy densities, since every scratch or crack would lead
to higher local resistance, thus a rapid increase in temperature during operation and in the end to failure of the system.Therefore,
some kind of automated, mechanical structure has to follow the complex cavity geometry and take record of the surface quality
after full assembly of the cavities. Finding the optimal topology of such a mechanical structure with respect to certainconstraints
like collision avoidance for the three different cavity types and minimal error propagation in direction perpendicular to the cavity
surface, is a perfect example for the generic problem described in section 1. Previously developed cavity inspection systems, like
[1] were extensively tested at CERN, but did not satisfy the specific requirements concerning the level of automation, accuracy,
repeatability and how much of the inner cavity surface couldbe inspected and mapped.
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Figure 1: Cavity Types for FCC, LINAC and LHC (left to right, all units in mm)

The main challenge for a robotic system is the complex workspace and especially the difference in diameter of the entrance of
the smallest cavity (FCC) and the point with maximum diameter of the biggest cavity (LHC). Furthermore, the system has to
detect surface anomalies of only 10µm. A 18MP camera with liquid lens, allowing it to focus between 20 to 25mm, will be used.
In order to provide one full image of the inner surface, the pictures will be stitched together after the inspection. Thus, accuracy
error of the end-effector position tangential to cavity surface should be not more than 1.2mm to obtain only 10% of overlapping
error and not more than 1mm in direction perpendicular to thecavity surface, which would change the contained surface area in
the image.
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3 Design Optimization

The start of the presented design optimization algorithm isa parametrized kinematic and dynamic robot model with a tentative
Degree of Freedom (DoF), which is at least equal or higher than the one of the expected optimal solution, in the form

z = f(q,p) and M(q,p)q̈+g(q, q̇,p) = Q, (1)

with the geometric parametersp, generalized joint coordinatesq, the cartesian coordinatesz, direct kinematicsf(q,p), mass
matrix M(q,p), the nonlinear termg(q, q̇,p) and the vectorQ representing the motor torques. While reaching all desired
locationszdes the nR serial link robot has to avoidcRR = 1

2
nR!

(nR−2)! possible self collisions andcRE = nRnE collisions with the
environment. The aim of this algorithm is to determine a set of geometric parametersp, such that the necessary input torque, the
robot link lengths, the degree of freedomnDoF of the robotic system and the error propagation will be optimized and the impact
of these objectives can be tuned independently. This is expressed as linear combination of the multiple objectives

J (x, p) = QT (x, p)KQQ(x, p)︸ ︷︷ ︸
J1

+kT
p arctan(p)

︸ ︷︷ ︸
J2

+kT
ww(x, p)︸ ︷︷ ︸

J3

, (2)

with the diagonal weighting matrixKQ = diag(kQ) and weighting vectorskp andkw. w(x, p) denoting the directional kinematic
manipulabilityw j = ∑3

i=1 |nT
j u j,iσ j,i|, according to [2], but written in vector form for allj = 1. . .np positions of interest. Using the

unit vector of directionn and the major and minor axes of the manipulability ellipsesσiui from the singular value decomposition

of the geometric JacobianJ(q,p) =

[(
∂vE
∂q̇

)T (
∂ωωωE
∂q̇

)T
]T

with the linear and angular velocitiesvE andωωωE , respectively. The term

J1 represents the torque,J2 represents the length of the robot links and at the same time the degree of freedom of the system,
and termJ3 represents the error propagation along the mechanical structure in the direction of interest. Thus the optimization
problem can be set up as a non-linear global optimization with non-linear equality and in-equality constraints

min
q, p

J (Q,p)

s.t. f(q,p)− zdes = 0
−c(q, p) ≤ 0
ub(q, p) ≤ 0
lb(q, p) ≤ 0,

(3)

with the distance to the desired cartesian position and orientationf(q,p)− zdes, vectorc(q, p) ∈ R(cRR+cRE )×1 containing the
minimal distances between possible collision objects and vectorsub(q, p) , lb(q, p) ∈ RnDoF2×1 limiting the link lengths and
joint ranges.

Here, the described design optimization algorithm is applied to the cavity inspection system. Since all the rotationaljoint axes are
parallel to the gravity vector, the termJ1 in equation 2 can be neglected. Similar work as been studied in [3], but did not optimize
the DoF of the system. In figure 2 and table 1 a tentative initial topology and geometry and the output of the optimization is
shown in figure 3 and table 2. The variablelA,B in tables 1 and 2 describe the distance from joint A to joint B.

1
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4 5
E

Figure 2: Initial Topology

length [mm]
l1,2 30
l2,3 30
l3,4 30
l4,5 20
l5,E 20

Table 1: Initial Geometry

1

2
3

4 E

Figure 3: Optimized Topology

length [mm]
l2,3 0
l3,4 221
l4,5 51
l5,E 50

Table 2: Optimized Geometry

Thus, the presented method provides a convenient way to find an optimal topology with respect to all above mentioned objectives,
as opposed to a manual design choice which would be a very tedious process even with only 5 DoF. A prototype for the Cavity
Inspection System is currently under construction at CERN.
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EXTENDED ABSTRACT

In the past decades, structural and control co-design has attracted a lot of attention due to its ability of merging multiple multi-
disciplinary requirements in a single design flow. Moreover, the increasing use of large structures, appendages and mechanisms
for space applications has rendered flexible modal analysis mandatory for the design of proper spacecraft control laws.
In order to tackle the non-trivial modeling and analysis of these large and complex space systems, a sub-structuring technique
using a multi-body approach is often considered to conceptually simplify the model. Seeing the overall structure as an assem-
bly of multiple simpler sub-systems with increasing complexity has also the advantage of handling different types of boundary
conditions at block assemblage level and easy sub-system validation. The wide use of this approach for space applications has
raised a significant interest in the development of proper modeling techniques that can prove to be versatile enough to account
for multiple multi-body configurations, ranging from open-loop chains to closed-loops mechanisms.

Many sub-structuring techniques can be found in literature. A common approach is linked to the Finite Element Method (FEM) or
the Assumed Modes Method (AMM) [1]. However, these methods are heavily influenced by the set of predetermined boundary
conditions assigned to the model, which may drastically vary in time. The Transfer Matrix (TMM) [2] and Finite Element-
Transfer Matrix (FE-TMM) Methods link the state vectors of two extremities of the flexible body using a transfer function.
These approaches, well suited for serially connected bodies, have inversion problems due to possible non-square systems and are
not viable for mechanism design. Methods based on effective mass/inertia of the appendages [3] are viable options for multi-body
tree-like structures, but they lose the complete vibrational description, as they only deliver the dynamic relation at the appendage
root point using a simplified model of the body.

The Two-Input-Two-Output Port (TITOP) Model, a direct dynamic approach initially proposed in [4] for the in-plane bending
of a uniform beam and later extended to the complete three-dimensional behaviour in [5], overcomes these issues. The structure
is conceived as a minimal state-space transfer between the accelerations and wrenches at the extremity points of the appendage
and embeds both the direct and inverse dynamics: the IN/OUT channels are easily numerically invertible to account for multiple
boundary conditions. Moreover, as seen in [5], this approach in a block-diagram model permits the design of closed-chain multi-
body systems for any boundary conditions by creating feedback loops and inverting IN/OUT channels.
The TITOP model for a generic flexible appendage Li, schematized in Fig.1 as DLi

PC(s), has as inputs the wrench WLi+1/Li,C
(forces and torques) exerted by the body Li at point C and the accelerations üP (linear and angular) imposed by the body Li−1
at point P. If the input is an acceleration then the output is a wrench and vice versa. These models, already implemented in a
toolbox developed at ISAE-Supaero - the Satellite Dynamics Toolbox (SDT) [6]- represent the basis of this research.
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Figure 1: TITOP scheme and nomenclature for a generic flexible appendage Li

Nevertheless, the application of the numerically inverted TITOP model seen in [5] showed some critical aspects, specifically
in obtaining the clamped-clamped boundary conditions (inversion of the first six channels). In particular, this structural model
fundamental for the creation of closed-loop kinematisms is prone to computational errors. Most notably, it is supposed to have
twelve modes at exactly zero frequency but, due to numerical issues, they present a quasi-null finite value instead. This issue,
which may seem trivial at single beam level, can have a huge impact in the context of sub-structuring models: it may introduce
numerical issues due to block repetitions as well as adding the need of major model reduction at global structure level.

This research therefore proposes a new approach to obtain a TITOP clamped-clamped model, introducing a novel analytical
procedure to invert the TITOP channels to obtain a model which does not need to be reduced and does not present the previously
discussed numerical issues. This was achieved by relying on a modal transformation of the state variables, distinguishing from
flexible and junction modes, as introduced in [3] and later on applied by [7].
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To obtain the desired result, the modal representation found in [7] is used, with ηηηk as modal coordinates and ΦΦΦCk as the flexible
eigenvector matrix. A change of variables is applied to the system, introducing vector εεεk, composed by two sub-arrays: εεεk1 and
εεεk2 . The first one, of size {6× 1}, corresponds to the 12 poles at zero of the system. The second vector has size {4× 1} and
determines the internal vibrational response of the system.

ηηηk = Fεεεk =
[
ΦΦΦ+

Ck null(ΦΦΦCk)
][εεεk1

εεεk2

]
(1)

The (·)+ operator denotes the generalized inverse (or pseudo-inverse) of the non-square matrix and null(·) the null space operator
(or kernel). The use of this last operator, when the equation is inverted, allows the creation of a model whose modes corresponding
to εεεk1 are set intrinsically to zero, while the modes associated with εεεk2 will not be simplified.

Given a beam of lenght l, section s, density ρ , Young modulus E, Poisson’s ratio ν , second moments of area along y and z axes
Iy, Iz and damping coefficient ξ , the following parameters were used as a case study to obtain the singular value plots seen in
Fig.2 : l = 20m, s = 0.0004m2, ρ = 2700kg/m2, E = 70GPa, ν = 0.35, Iy = 6.7e−7m−4, Iz = 6.7e−7m−4, ξ = 0.001.
The GWP,üP(s) transfer between üP and WLi/Li−1,P is showed in Fig.2 in form of singular value plots. The analytically inverted
TITOP beam model Gana

WP,üP
(s) is compared to the numerically inverted TITOP model Gnum

WP,üP
(s). The two responses match

exactly except for near-to-zero frequency values: in this range the numerical inversion produces artificial behaviours like non-
physical zeros and poles. The proposed analytical system overcomes these issues, granting and infinite gain at zero frequency
with a correct 1/s2 dynamic at the low frequency range. This is in fact the expected behaviour of the system, where the imposition
of non-compatible accelerations at the two extremities of the rigid beam produces infinite efforts.

In conclusion, the introduction of an analytical clamped-clamped TITOP beam model has allowed the creation of a new important
tool for the structural modeling of large space structures. This will allow for the creation of more complex closed-loop chain
structural components without having issues related to numerical inversion or having the need to perform model reduction. In
the context of a multi-body modeling approach, the creation of this model will allow for better results throughout all phases of
design as it will be widely present and vastly used to create large space multi-body systems.
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EXTENDED ABSTRACT

1 Introduction

In [1] a compliant and redundantly actuated 2-DOF 3RRR parallel kinematic manipulator (PKM) has been introduced as “best of
both worlds” for precision applications. Being a compliant mechanism, or more precisely a flexure-based mechanism, determin-
istic behaviour can be realised because of the low level of friction, hysteresis and backlash. Being also a redundantly actuated
PKM, it combines the advantages of PKM, i.e. the high stiffness, low inertia and large accelerations, with an improved handling
of singularities and optimised actuator loading made possible by the redundancy. Simulations indeed demonstrated advantages
of combining both concepts. The flexure hinges in compliant manipulators inherently show a reduced support stiffness for large
joint angles. In a PKM with a redundant link this reduction can be limited. Furthermore, the redundant actuation offers a possi-
bility to combine load balancing techniques with preloading of the compliant joints to balance the actuator efforts needed to keep
the end effector (EE) stationary at any position different from the equilibrium position [1].

A PKM with “classical” joints can be operated throughout the complete kinematically admissible range [2]. Mimicking this
behaviour with flexure joints is a challenge as the required joint angles are quite large even for advanced joint concepts that
emerged in recent years. Hence we investigate in this paper how a similar performance can be obtained throughout the same or
larger workspace area as before (“more”) when the joint angles are limited (“less”). This can be accomplished by using longer
links, which come with the drawback of an increased mass, but can still be beneficial if this is compensated by an increased
support stiffness due to less required joint rotations. The optimisation of this trade-off is presented in this paper as well the
experimental validation with an outlook to the implementation of a control scheme.

2 Design Optimisation

The three arms of the 3RRR PKM are assumed to be similar and the actuators are located at the corners of an equilateral triangle,
see Figure 1(a). At first a simplified kinematic model is used to determine the reachable workspace and the required joint
rotations. The rigid links are connected with ideal rotational joints. Two important geometrical parameters are the total length L
of each arm and the distance R of each actuator to the centre of the triangle. The workspace reachable by the EE is bounded by
three circular arcs with radii L of which an example is shown in red and labelled “Defn 1” in Figure 1 (b). This is the workspace
that has been considered in [1]. The worst case dynamic performance is found in the corners of this area where two arms are fully
stretched. In these locations the support stiffness will be lowest as several joints are at or close to their extreme rotation angles.

The blue curves, labelled “Defn 2”, in Figure 1 (b) present a first alternative workspace definition. Instead of trying to move to all
reachable locations, the corners are cut off e.g. by limiting the workspace to the enclosed circle. It can be shown that using longer
arms a larger workspace area can now be reached with the same ratio between mass and support stiffness as before. Although
this is an improvement, it appeared that for controlled EE motion still difficulties arose from singular behaviour near the three
locations on the enclosed circle where one of the arms is fully stretched.

Hence a third definition of the workspace is presented with the green curves, labelled “Defn 3”, in Figure 1 (b). This workspace is
a circle which is taken some fixed offset smaller than the maximum enclosed circle such that the (near) singularities are avoided.
This results in a reduced range of the motions for the joints as presented in Figure 1 (c). The joint angles in this figure are
computed for a manipulator where the total arm length L is split into equal halves for the upper and lower arm respectively. The
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Figure 1: Design of the planar 2-DOF 3RRR PKM with compliant joints.
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required rotational range is presented as a function of the so-called (linear) workspace ratio, which is defined as rws =
√

Aws/Afp,
where Aws is the workspace area and Afp is the triangular area of the manipulator’s footprint. It can be seen that the third definition
of the workspace requires smaller joint angles to reach the same area. A drawback is that the arm length increases even more
which could result in less support stiffness as will be examined next in a dynamic analysis.

In this analysis a dynamic model of the manipulator is used to obtain an optimal design of the system to be manufactured with
3D printing. It involves the following ingredients:

• A more detailed flexible multibody model of the manipulator. The shoulder and elbow joint are butterfly joints. In the wrist
three links are connected with a tri-cartwheel joint. All leaf springs are modelled with non-linear flexible beam elements
in the SPACAR software package.

• The manipulator model depends on a few geometric parameters like the arm length L, dimensions of the leaf springs in the
flexure joints, orientation of the joints relative to the links, pre-tension of the elbow and shoulder joints. The locations of
the actuators and shoulder joints are fixed.

• The required actuator torques are computed that are needed to position the EE at any location in the workspace. The
actuator redundancy can be exploited to minimise either the 2-norm or ∞-norm of the torques.

• The system’s natural frequencies are computed in the neutral configuration as well as in two critical EE locations on the
border of the workspace. Furthermore the maximum occurring stress is simulated.

The design is optimized for a maximum workspace ratio rws where parasitic resonance frequencies are always above 45 Hz as in
previous designs, stresses are below material limits and driving torques satisfy actuator limits.

3 Numerical and experimental results

The design optimisation resulted in a further increase of the workspace area while the first simulated parasitic natural frequency
is kept above 45 Hz. More specifically, the workspace ratios as shown in Figure 1(a) are respectively rws = 0.1922 in the original
“Defn 1” (red) [1], rws = 0.2167 for “Defn 2” (blue), but can now be increased to rws = 0.3532 (green).

The dynamic behaviour of the actual manipulator has been characterized with system identification where a multi-sine excitation
is used to estimate the frequency response of Figure 2(a). The redundant actuation and the sensing are transformed to two degrees
of freedom being both in-plane translations of the EE. The first higher order natural frequency is sufficiently high.
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Figure 2: Experimental results of the planar 2-DOF 3RRR PKM with compliant joints.

The balancing of the actuator torques is investigated by positioning the EE throughout the workspace with and without preloading
of elbow and shoulder joints. Figure 2(c) shows that with preloading the maximum torque of actuator 3 stays well within the
imposed limit. The torques for the other actuators show similar behaviour, rotated ±120◦. Without this preloading it can be
seen in Figure 2(b) that the torque limits are already exceeded before the edges of the workspace are reached. More details and
closed-loop motion control will be outlined in the full paper.

4 Conclusion

This paper shows a new design of a planar 2-DOF 3RRR parallel manipulator with redundant actuation and compliant joints. It
was found that a combination of longer link lengths and restricted ranges for the joints rotation results in a manipulator that can
reach a larger workspace area with similar performance as before [1].
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EXTENDED ABSTRACT

1 Context

For many applications in robotics, it is crucial to take into account all the physical phenomena: of course mechanics but also
electrical and thermal. To do so, a mechatronic approach is needed so as to gather, in the same model, different physics. The Bond
Graph (BG) offers this multi-physics approach in the modeling, the control and analysis of parallel robots. Computer science
and software dedicated to BGs have considerably progressed the last two decades and give new insights on older research works
made in multibody modeling with Bond Graphs [1, 2].

The first studies in this frame have been conducted on 3-CRS: a parallel reconfigurable robot [3, 4]. The 3-CRS robot is an original
parallel mechanism having 6 degrees of freedom (DOFs) with only 3 limbs (Figure 1). This mechanism uses two motorized joints
per limb: the prismatic joint and the following revolute joint. This new paradigm of actuation opens up research fields on new
families of robots, which should particularly interest the parallel robotics community. According to its dimensional synthesis,
this mechanism can have remarkable kinematic properties such as a large orientation workspace or reconfiguration capabilities.

Figure 1: CAD visualization (a) and kinematics scheme (b) of the 3-CRS robot

2 Problem description

What can be the benefits of a BG approach be in the modeling, simulation and control of parallel robots, as opposed to a classic
approach? Different lines of work can be considered: a modular modeling approach thanks to its structural and object oriented
features, the possibility of model inversion–based control with the bi-causal Bond Graph, or the model reduction features and the
energetic analysis due to its intrinsic properties. At this stage of the project, the focus is on the modeling of parallel robots (the
application with the 3-CRS robot is shown in this paper) with a modular and mechatronic approach using Bond Graph.

3 Methology

The Tiernego and Bos [5] method has been selected for modelling the robot with BG, because this method allows a modular
approach. This method – which has been already used to model complex multibody systems [6, 7] – enables a multibody system
to be built as an assembly of rigid bodies models and joints models. The modular approach has been improved here by the
creation of a model library and the implementation properties of 20-sim objects, which allows different variants of an object to be
represented. The theoretical foundations of this method are based on the use of absolute coordinate systems and Newton–Euler
equations. The dynamic equations of a rigid body therefore depend on its mass/inertia properties and on geometric parameters
for the body under consideration. The kinematic joints constrain the effort and flow vectors in the assembly of two bodies,
so that the desired relative motion can be achieved. Consequently, the dynamic equations of the complete system consist of
the dynamic equations of each body and the constraint equations at the velocity level of each joint. The equations obtained
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are differential algebraic equations (DAE’s) whose numerical resolution requires specific numerical integration methods such as
Backward Differential Formula (BDF).

The model of the electromechanical actuators (brushed DC motors + reduction gears) has been incorporated so as to obtain a
complete mechatronic model. A complete controller (Figure 2) has been designed with:

• a trajectory generation block to define different types of geometric trajectories and time scaling
• an inverse geometric model to transform the task coordinates into joint coordinates
• and a PID controller to define the axis control for each actuator

Figure 2: Bond graph model (20-sim) of the 3-CRS robot

4 First results

Simulations have been conducted in 20-sim software for different geometric trajectories and time scaling of the end effector in
the work space. The results have been verified with the 3D mechanics of 20-sim, a commercial multi-body dynamics software.
Validation using a prototype already built in the lab is planned.
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EXTENDED ABSTRACT

1 Introduction

Spatial pose-estimation devices for mobile and cable-suspended robots have been rapidly developed. The pose estimation sensor
unit of the HTC virtual reality system, which operates with swept laser beams, has aroused many researchers’ interest. We present
experiments with a double pendulum robot: the ACROBOTER equipped with the HTC Vive Tracker. The tracking of pre-defined
end-effector trajectories of various speeds was ensured by linear feedback controller. The pose feedback of the controller was
provided by the HTC Vive. As a reference, the realized trajectory was measured by the OptiTrack motion capture system. The
accuracy of the HTC Vive sensor was assessed focusing on the trajectory speed, acceleration and jerk.

2 Methods

The ACROBOTER [1] is an under actuated crane-like indoor domestic robot prototype, see mechanical model in Fig. 1 left.
From mechanical point of view, it is a spatial double pendulum. The main cable, and three secondary cables are connecting the
Climbing Unit with the Cable Connector and the Swinging Unit. The 12 DoF robot is equipped with winches and fan actuators,
which sums up to 7 independent control inputs. It is a good experimental tool for testing underactuated control algorithms [2, 3].

The mechanical model of the system is described by using redundant coordinate set q. For simulation purposes, the equation of
motion is formulated in the following general form, together with the geometric constraints - represented in the acceleration level
with Baumgarte stabilization: (M is the mass matrix, C is the vector of velocity-related inertial forces and gravitational forces,
ϕϕϕq is the constraint Jacobian, λλλ is the vector of Lagrange-multipliers, H is the control input matrix, τττ is the vector of independent
control inputs, α and β are the Baumgarte parameters):

[
M ϕϕϕᵀ

q
ϕϕϕq 0

][
q̈
λλλ

]
=

[
Hτττ −C

−ϕ̇ϕϕqq̇−2αϕϕϕqq̇−β 2ϕϕϕ

]
. (1)

The control input - for the simulation and for the measurements as well - was obtained by using the following formula:

u =−KPe−KDė+u∗, (2)

where the gain matrices KP,KD are constant diagonal matrices, and u∗ is the estimation of the input forces that compensate the
gravitational effects furthermore the error vector e is composed of the real SC winch angles ϑi, the desired winch angle ϑ d, the
real SU position coordinates xSU, ySU, the desired SU position coordinates xd

SU, yd
SU, the measured yaw angle ψSU of the SU and

the desired yaw angle ψd
SU of the SU:

e = [ϑ1 −ϑ d, ϑ2 −ϑ d, ϑ3 −ϑ d, xSU − xd
SU, ySU − yd

SU, ψSU −ψd
SU]

ᵀ (3)

The Tracker Unit was placed on the SU and four trajectories with different speed were defined (average speed: 0.031 m/s,
0.041 m/s, 0.063 m/s, 0.12 m/s), in order to gain information about the dynamic effects on the accuracy and the precision.

3 Results and conclusion

Although, the prototype of the ACROBOTER manipulator was already able to operate in 2009 [4], the details of the trajectory
tracking performance have never been published and the achieved trajectory speed was very low. The improved prototype of
the ACROBOTER achieved stable pose control (Fig. 1 right) even for 0.55 m/s max. trajectory speed. The HTC Vive Tracker
pose measurement unit was proved to be satisfactory for a feedback control loop if 5 mm position error is acceptable. Within
our statistical analysis, we expressed the position and angular error as the function of the trajectory speed which can be useful in
further researches and applications. It was also proved that the pose error correlates to the acceleration and the jerk, see Fig. 2.
As an additional result, we observed that the OptiTrack operation was not affected at all by the Vive Lighthouses. However,
the OptiTrack infrared light sources, spoiled the operation of the Vive Tracker by disturbing its sensors. After switching off the
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Figure 1: Left: Dynamic model of the double pendulum robot, Right: Trajectory tracking performance

Figure 2: The influence of the distance of the actual position from the origin, the trajectory speed, acceleration and jerk on the VO
(Vive – OptiTrack) position measurement error. The black squares show the mean value, the standard deviation is shown by the
vertical black lines, the IQR is visualized by the light grey area, in which the horizontal line shows the median. The regression
line is shown by red dashed line in the second panel.

OptiTrack infrared light sources and placing active markers on the robot, the OptiTrack and Vive worked together well. We also
report that the performance of the HTC Vive highly depends on its vibration isolation from the object on which it is attached.
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EXTENDED ABSTRACT

1 Introduction

To estimate states of a mechanical system, the independent coordinate method was introduced in [1] by using the independent
positions and velocities of the multibody models as the states of a Kalman filter. Using this method, a system of full coordi-
nates can be estimated in terms of independent coordinates in both open- and closed-loop multibody models. The independent
coordinate method is further extended to hydraulically actuated systems [2] in an application of state estimation using an indirect
extended Kalman filter (EKF). Being one of the state estimation method based on Kalman filter, EKF has been applied to different
applications for nonlinear systems [3]. However, due to several reported performance degradation which are mostly related to the
linearization procedure of the EKF, an alternative solution named as the unscented Kalman filter (UKF) is proposed based on the
unscented transformation (UT) method [4]. This study proposes the state estimation of hydraulically driven systems using the
UKF. The implementation of state estimation algorithm is explained using the simulation models of mechanism which are named
as real system, simulation model and state estimator. The sensor measurements are taken from the real system. White Gaussian
noise is added to the sensor measurements to replicate the actual sensors. The modelling errors are introduced in the force model
of the simulation model and state estimator. As an example, the proposed state estimation algorithm is applied to a hydraulically
actuated four-bar mechanism. The application of UKF is explained through the working cycle of a hydraulic actuator in the state
estimator and the results are compared to real system.

2 Hydraulically actuated multibody model

In this study, the double-step semi-recursive formulation is used to model the closed-loop multibody model. The equations of
motion using this formulation can be written as [5]

RT
z RT

d TT MTRdRzz̈i = RT
z RT

d
(
TT Q−TT MD

)
, (1)

where Rz is the velocity transformation matrix, Rd is the block-diagonal matrix, T is the constant path matrix, M is the composite
mass matrix of the system, z̈i is the vector of independent relative joint accelerations, Q is vector of the composite forces and

D = TRd

[
−
(

ΦΦΦd
z

)−1 (
Φ̇ΦΦzż

)

0

]
+TṘdż represent the absolute accelerations, when the vector of relative joint accelerations z̈ is

zero. Here, ΦΦΦd
z is the jacobian matrix of constraint equations with respect to the vector of dependent relative joint positions, Φ̇ΦΦz

is the first time derivative of the jacobian matrix of constraint equations with respect to the vector of relative joint positions z
and ż is the vector of relative joint velocity. The lumped fluid theory is used to model the hydraulic actuators. The second order
differential equations, Eq. (1) , is converted into the first order differential equations as

[
żi

z̈i

]
=

[
żi

(M′Σ)−1Q′Σ

]
≡ f(x), (2)

where x =
[
zi żi

]T , M′Σ = RT
z RT

d TT MTRdRz and Q′Σ = RT
z RT

d

(
TT Q−TT MD

)
represent the accumulated mass matrix and

accumulated force vector, respectively. Here, zi and żi represent the respective vectors of the independent relative joint positions
and velocities.

3 Unscented Kalman filter methodology

At prediction stage, UKF is initiated by an initial covariance matrix P+
k−1 and an independent state vector x̂+k−1. Through unscented

transformation [4], a set of 2L+1 sigma points χk is generated in which L represents the length of independent state vector x̂−k−1.
With the equation (2), the mean independent state vector x̂−k is computed. The covariance matrix P−k is calculated using the
weights and a white Gaussian process noise w, as mentioned in [4]. Further, using sensor measurements hk and a white Gaussian
measurement noise v, the independent state vector and the associated covariance matrix is corrected for the next time step as





Kk = Pxkyk P−1
yk

x̂+k = x̂−k +Kk(hk−y′−k )

P+
k = P−k −KkPykKT

k

, (3)
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where Kk is the Kalman gain, Pxkyk and Pyk are the covariances in UKF [4] and y′−k is the approximated weighted mean.

4 Results and Conclusion

The detailed modeling of the hydraulically driven four-bar mechanism, as shown in Figure 1a, using the double-step semi-
recursive formulation and the lumped fluid theory in a monolithic coupling can be found in [6]. From the real system, measure-
ments of the actuator position s, pump pressure pp, and pressure on the piston side p1 are considered. In the state estimator, the
state vector x =

[
s ṡ pp p1 p2

]T is used for the presented case example in the UKF. Here, ṡ is the actuator velocity and
p2 is the pressure on the piston-rod side. The results of state estimation UKF algorithm are presented in Figure 1 in terms of the
estimation of working cycle of the hydraulic actuator. As can be seen, despite the modelling errors, the actuator position of state
estimator is precisely following the real system. However, in case of simulation model, the actuator position is different than the
real system due to modelling errors. Further, the root mean square error associated to the working cycle of state estimator with
respect to the real system is 0.02 % which demonstrates the accuracy of state estimation UKF algorithm. The state estimation
using hydraulically actuated multibody model and UKF can find applications in the digital twin of heavy machinery.

(a) Hydraulically driven four-bar mechanism.
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(b) The working cycle of mechanism is explained in terms of the hy-
draulic actuator position.

Figure 1: Implementation of UKF state estimation in the hydraulically driven four-bar mechanism and working cycle. In Fig-
ure 1a, A,B,C,D,G,O are the points on mechanism. a, b, c and d are the ports of directional control valve. Qd1, Qd2, QR and
Qp are the flow rates. Vp, V1 and V2 represent the hydraulic control volumes. pT is the constant pressure tank.
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EXTENDED ABSTRACT 

1 Introduction 

The control of underactuated multibody systems is a challenge. If the admissible trajectory is known then the control can be 
carried out by piecewise linearization and linear control around such trajectory. The key problem is the synthesis of admissible 
trajectory. This paper is devoted to an iterative method of admissible trajectory synthesis. 

2 Problem statement 

The underactuated multibody system is transformed into state space description 

d/dt x = f(x) + g(x)u                                                                                                      (1) 

with state x, the control u and system vectors f(x) and g(x). The initial and final states x0 and xf are equilibrium states of the 
system (1). It is supposed that the system (1) remains controllable after linearization at the initial and final states. 

The system (1) is decomposed by the decomposition used for Nonlinear Quadratic Regulator (NQR) [1] (named also State 
Dependent Riccatti Equation (SDRE)). 

d/dt x = A(x)x + g(x)u                                                                                                         (2) 

3 Admissible Trajectory Iteration 

The influence of system properties during the motion given by the matrix A(x) is unknown. Therefore this influence is 
approximated by some i-th trajectory  

x(i) = x(i)(t)                                                                                                                 (3) 

Suitable initial trajectory might be just the connection between initial and final states in each DOF.  

This trajectory is substituted into dynamics (2) 

A(i) = A(x(i)(t)) = A(i)(t)                                                                                                (4) 

g(i) = g(x(i)(t)) = g(i)(t)                                                                                                      . 

that leads to linear time varying system approximating the investigated system (2) 

d/dt x = A(i)(t)x + g(i)(t)u                                                                                                   (5) 

This linear time varying system (5) is used for computation of intermediate trajectory x(i*) 

d/dt x(i*) = A(i)(t)x(i*) + g(i)(t)u(i*)                                                                                                                                                (6) 

from the initial into the final states. Then another intermediate trajectory is constructed as the convex combination of previous 
ones by a constant αi 

x(i**) = (1-αi)x(i)+ αix(i*)                                                                                                                                                            (7) 

This intermediate trajectory is used for another approximation of the dynamics 

A(i*) = A(x(i**)(t)) = A(i*)(t)                                                                                                  (8) 

g(i*) = g(x(i**)(t)) = g(i*)(t)                                                                                                        . 
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and finally the next trajectory iteration is computed 

d/dt x((i+1)e) = A(i*)(t)x((i+1)e) + g(i*)(t)u((i+1)e)                                                                                                               (9) 

The constant αi is chosen by halving α = α/2 from 1 in such way that the deviation between subsequent trajectory iterations is 
decreased. The trajectory deviation is introduced 

D(i) = Int0
T (x(i)(t)- x((i-1)*)(t))2 dt + (u(i)(t)- u((i-1)*)(t))2 dt                                                     (10) 

And the decrease D((i+1)e) < D(i) is required 

If D((i+1)e) < D(i) then x(i+1) = x((i+1)e), D(i+1) = D((i+1)e)                                                                                       (11) 
                              else α = α/2 and return to x(i**) = (1-αi)x(i)+ αix(i*) and continue to new D((i+1)e) 

4 Proof of iteration convergence 

The above described procedure and the proof are based on such choice of constant αi that the subsequent trajectories are mutually 
close (vicinity of previous iteration) in such a way that the linearization of dynamics is for them valid. The idea is based on the 
procedure of optimal trafjectory synthesis [2]. The change of trajectories within one iteration is 

x(i+1) = x(i*) + δxi+1                                                                                                                                                     (12) 
u(i+1) = u(i*) + δui+1                                                                                                                                                             . 

  So the values δxi+1 and δui+1 are small and their dynamics can be described 

d/dt δxi+1 = A(x(i)(t)) δxi+1 + g(x(i)(t)) δui+1 + δA(x(i)(t)) αi(x(i*) - x(i))x((i+1)) + δg(x(i)(t)) αi(x(i*) - x(i))u((i+1))           (13) 

If αi=0 then d/dt δxi+1 = A(x(i)(t)) δxi+1 + g(x(i)(t)) δui+1 and δxi+1(t) = 0, δui+1(t) = 0 and D(i+1) = 0 
For increasing αi the value of D(i+1) increases because the dynamics of d/dt δxi+1 is excited by the nonzero terms δA(x(i)(t)) 
αi(x(i*) - x(i))x((i+1)) + δg(x(i)(t)) αi(x(i*) - x(i))u((i+1)) 
These terms are nonzero exactly when x(i*) <> x(i) and D(i+1) <> 0 for αi>0. 
It ensures the validity of used Taylor series for A(x). It is ensured by appropriate small value of αi>0. The modifications of tra-
jectories xi+1  must be done step by step. 

The value of αi is increased until it is reached D(i+1) = κ D(i) where κ < 1-β and β is firmly fixed positive value, for example 
β=0.1, 0.2, …, 0.5. Then maximum value of κ is 0.9, 0.8, …, 0.5. 

By the choice of αi and κ it is ensured that the sequence of D(i+1) is convergent 

Thus the sequence of D(i+1) is decreasing below some geometric sequence. Therefore D(i+1) converges to 0 but being se-
quence with nonzero values. D(i+1) -> 0 q.e.d. 

5 Conclusion 

The approximation of dynamics through its decomposition and trajectory iteration enables by subsequent modification from 
initial trajectory step by step within the vicinity of previous ones into the finally admissible trajectory.   
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EXTENDED ABSTRACT

1 Introduction

In this study, we analyze proportional-derivative-acceleration (PDA) feedback of a second-order unstable plant governed by

ϕ̈(t)−a0ϕ(t) =−kpϕ(t− τp)− kdϕ̇(t− τd)− kaϕ̈(t− τa) , (1)

where a0 is fixed, and a0 > 0, τp > 0, τd > 0, τa > 0.

Following [1] one can also think of (1) as a control system with a single control-loop latency τ with some additional delays (or
delay detunings) δp, δd and δa in all the three terms, i.e. τp = τ +δp, τd = τ +δd, τa = τ +δa and δp ≥ 0, δd ≥ 0, δa ≥ 0. These
additional delays are introduced in hopes of improving the stabilizability of the original system with a single delay τ . Hence, (1)
can be considered as a detuned PDA feedback.

Special cases of (1) involve delayed PD feedback (ka = 0, τp = τd), detuned PD feedback (ka = 0) and delayed PDA feedback
(τp = τd = τa). The critical delay for delayed PD feedback was derived by Schürer [2], while for detuned PD and delayed PDA
feedback it was given by Sieber and Krauskopf [1]. The goal of this study is to determine the critical delay τcrit of the detuned
PDA feedback, which can be defined as the maximum of min{τp,τd,τa} such that the system is still stabilizable.

2 Critical point (mmm000 === 555,,,kkka ===−−−111)

The characteristic function of (1) reads

D(s) = s2−a0 + kpe−sτp + kdse−sτd + kas2e−sτa . (2)

Equation (1) is a neutral delay-differential equation (NDDE), therefore strong stability requires that |ka|< 1.

In order to find the critical parameters corresponding to the critical delay, first, we investigate the maximal multiplicity of the
characteristic root s = 0. This idea is motivated by the multiplicity-induced-dominancy (MID) property [3]. It can be shown that
the root s = 0 of the quasipolynomial (2) cannot have a multiplicity greater than or equal to 6 if |ka| < 1. Similarly, multiplicity
5 of s = 0 cannot occur if 0 ≤ ka ≤ 1. However, if −1 ≤ ka < 0 then multiplicity 5 can be reached, and the minimum of the
delays is maximal for ka =−1 (see the solid black line and the black point in Fig. 1). Therefore, we focus on the case ka =−1.
In this case, the control parameters and the delays satisfy the conditions D(i)(0) = 0, i = 0,1, ...,4 and ka = −1. This system of
equations gives a unique solution satisfying τp,τd,τa > 0:

kp = a0 , kd = 2
√

6a0 , ka =−1 , τp = 2

√
6
a0

, τd =

√
6
a0

, τa = 2

√
6
a0

. (3)

With parameters (3) and z =
√

6s/
√

a0 the quasipolynomial (2) has an equivalent form

D̃(z) =

(
z2

6
−1

)
sinhz+ z . (4)

It can be shown that (4) has only purely imaginary roots.

3 Stabilization for τττd <<<
√

666///aaa000 (mmmsss000 === 555)

In order to stabilize (2), we choose the control parameters in a way that a real root s0 has multiplicity 5, i.e. D(i)(s0) = 0,
i = 0,1, ..,4. The first three equations (D(i)(s0) = 0, i = 0,1,2) are linear in kp, kd and ka, and the gains can be given as explicit
functions of s0, τp, τd and τa. Substitution into the remaining two equations (D(i)(s0) = 0, i= 3,4) gives two polynomial equations
for s0, τp, τd and τa. For a fixed pair (τd, τa) one can find s0 and τp numerically. Among the possible solutions only the ones
should be considered where s0 < 0 and τp > 0. Then one can check the stability of (2) by the condition |ka|< 1 and by calculating
the number of unstable roots according to the numerical method [4]. The results are shown in Fig. 1.

Figure 1 shows that we can use a detuned PDA controller to stabilize the unstable open-loop system P(s) = s2−a0 if the control-
loop latency τ is smaller than

√
6/a0. That is, for every 0 < τd = τ <

√
6/a0 we can find τp,τa > τ for which (2) is stabilizable.
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Figure 1: The region of feedback delays that can be stabilized by a real root s0 with multiplicity ms0 = 5 if a0 = 2

4 Conclusions

The critical delay and the corresponding critical parameters (feedback delays τp,τd,τa and control gains kp,kd,ka) are summarized
in Table 1 for PD, detuned PD, PDA and detuned PDA feedbacks. Detuning the feedback terms in PD feedback increases the
achievable feedback delay by 47% [1]. Adding acceleration feedback increases the critical delay by 41% (by a factor of

√
2) [1].

Here, we have shown that the critical delay can further be increased, up to 73% (by a factor of
√

3) via employing detuned PDA
feedback. This improved stabilizability can be exploited by assigning a negative real root with multiplicity 5. That is, this way
we can always construct a stabilizing controller for any feedback delay smaller than the critical delay.

Table 1: Critical parameters for a0 = 2

PD detuned PD PDA detuned PDA

τp

√
2
a0

= 1
√

6+4
√

3
√

1
a0

= 2.54 2√
a0

= 1.41 2
√

6
a0

= 3.46

τd

√
2
a0

= 1
√

6+4
√

3
3

√
1
a0

= 1.47 2√
a0

= 1.41
√

6
a0

= 1.73

τa - - 2√
a0

= 1.41 2
√

6
a0

= 3.46

kp a0 = 2 a0 = 2 a0 = 2 a0 = 2

kd
√

2a0 = 2
√

6+4
√

3
√

a0 = 5.08 2
√

a0 = 2.83 2
√

6a0 = 6.93
ka - - 1 −1

τcrit

√
2
a0

= 1
√

6+4
√

3
3

√
1
a0

= 1.47 2√
a0

= 1.41
√

6
a0

= 1.73
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EXTENDED ABSTRACT

1 Introduction

A method for robust trajectory planning in uderactuated multibody systems, aimed at reducing the effects of the uncertainty on
the main parameters, is here presented. The method is based on an indirect variational formulation, which is translated into a
Two-Point Boundary Value Problem (TPBVP) and solved numerically. By exploiting the mathematical frame proposed in [1] for
inverse dynamics, and then extended in [2] for trajectory planning, robustness is obtained by including the sensitivity functions
within the problem, together with boundary constraints on the trajectory. A formulation aimed at reducing both the residual and
the transient oscillations, while keeping small and smooth the control effort, is proposed and numerically validated.

2 System model formulation

The model of a n-dimensional underactuated multibody system, with q the vector of the independent coordinates, can be parti-
tioned by defining the vector of m < n actuated generalized coordinates, and the vector qu of the n−m unuactuated ones:

[
Maa Mau
MT

au Muu

][
q̈a
q̈u

]
=

[
Ka(q)
Ku(q)

]
+

[
Ga(q, q̇)
Gu(q, q̇)

]
+

[
Ba
0

]
F (1)

The equation of the internal dynamics, q̈u = M−1
uu (Ku +Gu)−M−1

uu MT
auq̈a, highlights that the motion of the unactuated coor-

dinates is excited by the motion of the actuated ones. By assuming that the actuated DOFs are not disturbed by the motion of
the unactuated ones (e.g because of effective control or small inertia ratio), the problem of optimal motion planning for load
vibration control can just rely on the internal dynamics. To get a more accurate representation, in this work a simplified model
of the actuators dynamics is included as well in the model adopted for motion planning, to account for their finite bandwidths
and to obtain a smooth trajectory; and effective choice is, for example, a first-order linear model. The actual acceleration of

the actuated coordinates is therefore written as a function of the reference acceleration q̈re f
a (t),

...qa(t) = −1
τ

q̈a(t)+
1
τ

q̈re f
a (t),

and this equation is accounted together with the internal dynamics in the control synthesis This model is then cast as a set of
first-order ODEs, ẋ = f(x, t,u), as required for solving the trajectory optimization problem, with u = q̈re f

a the control vector and
x = [q̇u, q̈a, q̇a,qu,qa]

T the state vector.

3 Variational formulation of robust trajectory planning

The robust trajectory planning problem is formulated as a TPBVP by augmenting the state with the sensitivity function S(t) =
∂x(t)
∂ µ

(µ is a critical uncertain scalar parameter), xr(t) :=
[

x(t)
S(t)

]
, and by solving the following problem, where the scalar

function gr is chosen to fulfill the required goals of the trajectory design:





minJr(xr, t,u) = min

t f∫

t0

gr(xr, t,u,µ)dt

sub ject to :
x(t0) = x0; x(t f ) = x f ;
S(t0) = 0; S(t f ) = 0;

ẋ(t) = f(x(t), t,u,µ); Ṡ(t) =
∂ f(x(t), t,u)

∂ µ
;

(2)

4 Application example

The numerical test case consists of a double-pendulum crane ( m1 = 0.192 kg, m2 = 0.201 kg, L1 = 0.470 m, L2 = 0.391 m). The
trolley motion is a rest-to-rest displacement with 0.3 m amplitude to be completed in 3 s. The uncertain parameter is L1. Two
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Figure 1: Scheme and kinematic model of the double-pendulum crane
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Figure 2: Load oscillation with perturbed plant (∆L1 =+20%)

Table 1: Performance measurements: motion profile and load oscillation
Test ÿmax ÿRMS

...y max
...y RMS transient peak transient RMS residual peak residual peak, ∆L1 = 20%

[m/s2] [m/s2] [m/s3] [m/s3] [mm] [mm] [mm] [mm]

NZV 0.2141 0.1299 1.6982 0.7381 27.347 17.037 0.169 8.850
ZVD 0.7067 0.3727 20.5333 6.0468 28.807 14.917 0.042 1.622

TPBVP, β = 20 0.5571 0.2283 19.2325 3.6195 21.984 12.943 0.001 1.470
TPBVP, β = 50 0.7030 0.2835 25.5660 4.2066 19.646 12.374 0.001 1.465

benchmark input shaping methods are adopted: the Negative Zero Vibration (NZV) and the Zero Vibration Derivative (ZVD)
shapers [3] with fifth-degree polynomials. The goal of motion planning is to design a robust profile with negligible residual
and transient oscillations of the end-effector (mass m2) . To meet the last requirement, the cost function has been defined as

g =
1
2

u2 +β exp
(
(γ (L1 sin(θ1)+L2 sin(θ1 +θ2)))

2
)

. Two values of β (β = 0 and β = 50) have been chosen to show how it
affects the load oscillation (γ is set to 50 for all the tests). The features of the commanded trolley profile are summarized in the
left part of Table 1 through the peak and RMS values of acceleration and jerk. The load response, in term of peak and RMS
oscillations, are reported in the right part of Table 1 in the case of unperturbed and perturbed plants. The comparison shows
that the proposed method has better robustness than the widely adopted ZVD shaper, while requiring lower actuator effort and
bandwidth. The comparison with the NZV shows that a slightly higher trolley acceleration is required by the proposed method,
while jerk increases remarkably. On the other hand, a great improvement of the transient and steady-state load response is ensured
both in the ideal situation and in the presence of model mismatch. These results and the possibility to trade off between reducing
transient and residual oscillations and keeping small the control effort by means of a suitable definition of the cost function,
corroborate the effectiveness of the proposed approach for solving trajectory planning in underactuated multibody systems.
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EXTENDED ABSTRACT 

1 Introduction 

Vibration plays a negative role in many engineering applications and often needs to be eliminated. Let us, for example, mention 

the impact of machine tool vibration to workpiece surface quality and fatigue in compliant structures, adverse effect of base 

vibration in precise instruments such as electron microscopes, deep space telescopes, particle detectors, etc. Vibration 

compensation is a big task also in control of robotic machines, considering classical industrial robots, micromanipulation 

assembly lines (e.g., in microchip production), or high precision surgery robots. The idea of the passive vibration absorber 

connected to the primary mechanical structure to suppress its vibrations is known and patented for approximately one hundred 

years. The main benefit of this passive approach is that no (or minimal) energy needs to be exerted to damp the oscillations. The 

active versions of vibration absorption concept (Figure 1) however significantly improve its efficiency. There is a lot of ways of 

control algorithm design. The interesting alternative is a Delayed Resonator (DR) approach [1], [2], [3] – an active vibration 

absorber with delayed feedback from the position, velocity or acceleration measurements. Piezoactuators or voice-coil actuators 

can be typically used as active elements. The concept of active dynamic absorbers for use planar serial robot has been introduced 

and formulated in [4]. Reducing the vibrations of the robots by means of active absorbers has the advantage that it can only be 

realized with the help of local sensors, for example with built-in encoders or a few extra accelerometers. In addition, the active 

absorbers allow the adaptation to the highly variable modal properties of the robot during motion in the workspace. The presented 

research extends the results of [4] for spatial mechanisms and replaces the LQR method with an observer [4] by simpler and 

more specific concept of uni-frequency 6 DOF absorbers. 

         

Figure 1:  a) 1 DOF active absorber    b) 3 DOF active planar absorber   c) 3 DOF absorber on primary platform [5] 

2 Uni-frequency 6 DOF active dynamic absorber 

For many types of machines, such as serial robots, the first eigenfrequency and the corresponding eigenmode are the most critical 

for unwanted excitation. The respective eigenmode often has a complex spatial shape and, for example, in the case of serial 

robots, it is considerably different for different end-effector positions in the workspace. Planar delayed resonator for entire vi-

bration absorption (Figure 1 b), c)) has been proposed and analyzed in [5]. The basis for the implementation of an active absorber 

is a mechanical structure with properties as close as possible to an uni-frequency absorber with one multiple natural frequency 

and the smallest possible mechanical dissipation during the motion. The situation with a spatial absorber is more complicated 

than with a planar variant and requires detailed analysis. 

The uni-frequency absorber configuration with one triple natural frequency can be achieved with a tuned planar absorber (Figure 

1 b)) with 3 degrees of freedom and three 3 springs [5]. On the other hand, in an analogous spatial absorber with 6 degrees of 

freedom, a uni-frequency configuration cannot be achieved, either by distributing the mass, nor by placing 6 springs and/or by 

tuning their stiffness. Many parametric and topological variants were analyzed. As an example, eigenfrequencies of a set of 

regular absorbers with a different platform height, including cubic and octahedron architectures (Figure 2 b)) are given on Figure 

3. The octahedron architecture (Figure 2 b) - lower) has one triple, one double and one single eigenfrequency. The cubic archi-

tecture (Figure 2 b) - upper) is closest to the uni-frequency ideal. Five of six eigenfrequencies are identical and only one is 

different (Figure 3), namely the eigenfrequency corresponding to the twisting/torsional mode around triangular platform axis 

202



For Peer Review Only

ECCOMAS Multibody Dynam
ics 2021

(Figure 2 c)). However, even here, the active forces (Figure 2 c) - lower) from the voice-coil actuators (Figure 2 c) - upper) must 

have one additional component compared to the planar variant [5], correcting the resulting passive twisting/torsional stiffness 

around the platform axis so that the absorber is change to uni-frequency. Subsequently, applying delayed position feedbacks from 

voice-coil length encoder sensors, the 3D-6 DOF absorber is turned to the ideal absorber at the given frequency similarly as for 

the planar variant [5]. Multiple pole of the 3D-DR is assigned at the frequency to be compensated. In addition, the active absorb-

ers allow the adaptation to the highly variable modal properties of the serial robot during motion in the robot workspace similarly 

to [4]. 

 

 Figure 2:  a) 6 DOF active absorber on robot   b) Cubic and octahedron configurations   c) Design concept and actuators forces 

 

Figure 3: Height dependency of eigenfrequencies of regular 6 DOF absorbers, including cubic and octahedron configurations 
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EXTENDED ABSTRACT 

1 Introduction 

Cable-driven parallel robots (CDPRs) are light-weight multibody systems where rigid links are replaced by cables to move an 

end-effector either in very large workspaces or with extremely high dynamics. A critical issue in the operation of CDPRs is 

ensuring tensile cable forces through proper motion planning and control [1], thus requiring advanced algorithms such as model-

based control schemes using state feedback. Since the direct measurement of the whole state is often not feasible, especially of 

the end-effector state variables, the development of state observers is of primary interest [2]. In this work, a nonlinear state 

observer based on an Extended Kalman Filter is developed and validated numerically. Some preliminary results are shown too. 

2 Dynamic modelling of a cable-suspended parallel robot 

The studied CDPR is sketched in Figure 1. It is a cable-suspended parallel robot in the sense that a three-DOF suspended end-

effector (modelled as a point mass m ) is driven by four cables winding on drums actuated by motors (whose equivalent moments 

of inertia are 
,1 ,2 ,3 ,4, , ,m m m mJ J J J ). The system is therefore overactuated, as often happens in CDPRs to increase the static 

equilibrium workspace [1]. The vector of dependent coordinates 
T

T T =  q P θ  includes the absolute Cartesian position of the 

end-effector 
T

p p px y z =  P  and the angular positions of the motors  1 2 3 4

T
   =θ . Under the assumption that 

cables are perfectly stiff and hence behave as holonomic ideal kinematic constraints, the ith constraint (i=1,..,4) that relates the 

end-effector coordinates and the angular positions of the motors is 
i = − il p a  (with 

ia  the absolute position of the exit-point of 

cable i), where 
0,i i il r= +

i
l  is the cable length (

0,il  is the cable length corresponding to 
i =0 and r is the drum radius). The 

dynamic model in dependent coordinates is therefore represented through the following set of DAEs, 
( )

T + =


=

Mq J λ f

Φ q 0
, where J  

is the Jacobian of the position constraints Φ , 
,1 ,2 ,3 ,4( , , , , , , )m m m mdiag m m m J J J J=M  is the mass matrix of the system, λ  is the 

vector of the Lagrange’s multipliers and f contains the external forces (gravity forces, motor torques, friction torques). 

 

Figure 1: CSPR driven by four cables and detail of the drum and the exit point of the i-th cable. 

3 Development of the Extended Kalman Filter (EKF) 

An EKF provides optimal estimates ˆ( )kx  of the actual state ( )
T

T Tk  =  x q q  of a first-order system representation, by merging 

the prediction of a nominal, discrete-time model ( 1) ( ( ), ( ))k f k k+ =x x f  with the measurements retrieved from a proper set of 
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sensors ( ) ( ( ), ( ))k g k k=y x f . The resulting closed-loop estimation is based on a prediction-correction scheme, 

ˆ ˆ( 1) ( ( ), ( )) ( ( ) ( ))k f k k k k+ = + −x x f K y y , where K  is the filter gain and ˆ( ) ( )k k−y y  is the output-estimation error ( ˆ( )ky  is the 

estimated output). K is updated at each time step k through the model Jacobian matrices and the covariance matrices of the model 

and the measurement noises; the latter ones are, in practice, tuning parameters [2]. 

In the test case, observability is ensured by including into y the measures provided by 3 motor encoders with 150 pulses (in 4x 

operation). Assessment of the results is done by comparing ˆ( )kx  with ( )kx  inferred from the model assumed as “the real system” 

and with no quantization, and with the state estimated through the forward kinematics and the noisy measurements (filtered 

numerical derivatives have been adopted, with a 15-Hz bandwidth, first-order, low-pass filter). The model used by the state 

observer has been converted into ODEs with dependent coordinates through different formulations (such as penalty formulation, 

Udwadia-Kalaba formulation), to retain all the variables in the estimation and handle redundancy. The “real system” has been 

instead modelled through independent coordinates, obtained through the projection matrix method, to see the impact of different 

multibody formulations in the estimation. A sample result is provided in Figure 2, where the penalty formulation [3] has been 

adopted; details on the estimation errors are shown in Figure 3. It is evident that the EKF gets rid of the quantization effectively 

by providing estimates with small errors and negligible delays; in contrast the speed estimates obtained through forward 

kinematics are not acceptable. Sensitivity analysis, by assuming random bounded perturbations of M, corroborates the EKF 

effectiveness. For example, a 10%+  perturbation of all the entries of M increases the RMS errors less than 0.1%. 

 

Figure 2: Comparison of actual and estimated P  and P . 

 

 EKF Forward 

kinematics 
RMS

xe [m] 1.13e-4 1.20e-4 

RMS

ye [m] 1.32e-4 1.26e-4 

RMS

ze [m] 2.04e-4 2.43e-4 

/

RMS

dx dte [m/s] 2.13e-3 0.064 

/

RMS

dy dte [m/s] 2.24e-3 0.059 

/

RMS

dz dte [m/s] 2.53e-3 0.055 
 

Figure 3: Time-history of position and velocity estimation errors of the EKF (a,b), and table with the comparisons 
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EXTENDED ABSTRACT 

1 Introduction 

Precise path tracking control in Cable Suspended Parallel Robots (CSPRs) is a challenging topic in the field of control of 

multibody systems, due to the positivity constraints on cable tensions. Trajectory planning strategies have been suggested to a-

priori ensure positive and bounded cable tensions along given paths (e.g. [1]). Conversely, standard controllers, such as PID, 

usually only adopt a-posteriori verification and control saturation. More conveniently, in this paper precise path tracking 

trajectory control in a CSPR is solved by exploiting and extending the concept of Model Predictive Control (MPC). Indeed, one 

of MPC promising features is the ability of including constraints in the optimal solution, by solving a constrained optimization 

problem [2]. In this paper the preliminary results on a novel architecture of MPC, tailored for CSPRs, are anticipated. First, since 

the dynamic model is non-linear, the proposed scheme is based on a two-step strategy which splits the system into two subsystems 

and uses them in a sequential approach to simplify control implementation. Then, MPC with embedded integrator (MPC-EI) is 

adopted to ensure precise path tracking. 

2 System model 

The studied system is depicted in Figure 1. It consists of a lumped mass (m) suspended by 3 cables and driven by 3 motors. Let 

 =  
T

T T
q p θ  be a set of 6 dependent coordinates containing the absolute cartesian position of the end-effector 

T

p p px y z =  p  and the absolute motor rotations  1 2 3

T
  =θ . Cables are assumed perfectly stiff and hence behave 

as holonomic ideal constraints: the kinematic constraint equation relating i  (i = 1,2,3) to the length of the ith cable is therefore 

0i i i ir  = − , where i  is the ith cable length ( i i = −p A  with iA  the absolute position of the ith exit point), ir  is the ith drum 

radius and 0i  is the cable length when 0i = . The resulting dynamic model, in terms of non-minimal coordinates, is 

=T
M q + J λ Q , where  1 2 3, , , , ,diag J J J m m m=M , J  is the Jacobian of the position constraints, λ  is the vector of the 

Lagrange multipliers and Q  contains the external forces (gravity forces, friction, motor torques). To meet the formalism of 

control theory, the set of DAEs obtained is converted into a minimal set of ODEs. By exploiting a matrix R such that =q Rp , 

the usual form of a multibody system dynamic model is obtained: ( ) ( )+ =T T T
R MR p R MR p R Q . Such a model has been 

implemented to simulate the real system in a Matlab-Simulink environment, also including simplified models of the sensors and 

the actuators. 

3 Design of the two-stage control scheme 

In the first step of control design, the subsystem made by the suspended load is considered, and MPC is applied to compute the 

required cable tensions iT  collected in vector T. The dynamic model adopted is the following one, where  0 0 9.81
T

= −g : 

 

3

1

i

i

i i

m m T
=

 −
= + −  − 


p A

p g
p A

 (1) 

To provide effective path tracking, MPC with embedded integrator is adopted. By introducing the difference variables 

( ) ( ) ( 1)k k k= − −
d d d

Δχ χ χ  ( ( )kdχ ∈ ℝ6 is the state vector of the first-order representation of (1)), and ( ) ( ) ( 1)k k k= − −ΔT T T , 

then the following discrete-time augmented state-space model is formulated for the MPC design: 

  6 3

3 6 3

3

( )
( 1) ( ) ( ), ( ) ( )

( )
k k k k k





   
+ = + =   

   

d d

d d d d

A 0 B p
χ χ ΔT y 0 I χ

C A I C B p
 (2) 
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dA ∈ ℝ6×6 is the constant dynamic matrix, ( )dB p ∈ ℝ6×3 is the pose-dependent input matrix, ( )ky ∈ ℝ3 is the output (equals 

to the end-effector pose), dC ∈ ℝ3×6 is the output matrix and  ( ) ( ) ( )
T

k k k=
d d

χ Δχ y  is the augmented state vector. The cost 

function ( ) ( )T TJ = − − +des des

Y ΔT
Y Y R Y Y ΔT R ΔT  is defined and minimized in the presence of bounds on the allowable 

tensions (𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥), where 
YR  and 

ΔTR  are weighting matrices, Y  and des
Y  are the predicted and the reference output over 

the prediction horizon. Finally, optimal cable tensions MPC

iT  are achieved at each time step through the receding horizon 

principle.  

The second stage computes the optimal motor torques ,m iC  through a feedforward approach, by exploiting the inverse-dynamic 

model of each actuator and the desired acceleration 
ref

i  and speed 
ref

i , computed through inverse kinematics of the load 

reference, , ,( ) ( ) ( ) ( )ref ref MPC

m i i i v i i i iC k J k f k rT k = + + . 

 
Figure 1: Scheme of the CSPR under  

investigation 

Table 1: System parameters 

𝐽1, 𝐽2, 𝐽3 Motor moments of inertia  2.6𝑒−5 [𝑘𝑔𝑚2] 

𝑓𝑣,1, 𝑓𝑣,2, 𝑓𝑣,3 Motor viscous friction coefficients 5𝑒−3 [𝑁𝑚𝑠/𝑟𝑎𝑑] 

𝑟1, 𝑟2, 𝑟3 Radius of the pulleys 0.036 [𝑚] 

𝑚 Mass of the suspended load 2.94 [𝑘𝑔] 

𝑇𝑚𝑖𝑛; 𝑇𝑚𝑎𝑥 Minimum and maximum tensions 5 ;  100 [𝑁] 

𝑇𝑠 Sampling time 2𝑒−3 [𝑠] 

𝑁𝑐; 𝑁𝑝 Control and prediction horizons 1 ;  60 

𝑹𝒀 ;  𝑹∆𝑻 Weighting matrices 𝑰180 ;  1𝑒−3𝑰3 

4 Numerical results 

The system parameters are stated in Table 1. A planar circular path has been assumed and a 5th-degree polynomial has been 

chosen as the trajectory. The spatial tracking is shown in Figure 2 and corroborates the control effectiveness: the actual and 

reference paths are almost overlapped, and the RMS value of the contour error is just  48.3 10 m− . A classical MPC without 

embedded integrator is also tested for comparison, it provides an RMS contour error equal to  310.1 10 m− . The same figure 

also shows the optimal cable tensions commanded by the MPC-EI, showing that cable constraints are satisfied. More details on 

the results, together with other path references, will be proposed in the full paper and in the conference presentation. 

  
Figure 2: Comparison between MPC formulation with (MPC-EI) and without (“Classical MPC”) embedded integrator, in 

terms of path tracking (a) and contour error (b). Cable tensions for MPC-EI (c). 
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EXTENDED ABSTRACT

1 Introduction

Tracking sequences of predefined open and closed paths is of crucial interest for applications like laser cutting and similar
production processes. Since theses paths are often not connected the question arises, how these paths should be sorted in order
to minimize overall process time. Although a more general approach would be conceivable, this work focuses on paths on the
2D plane and gantry like robotic systems as shown in figure 1. These systems are subject to restrictions like maximum velocity,
acceleration and jerk for each axis respectively. Furthermore there are process specific constraints. In case of the laser cutting
process the maximum velocity tangentially to the path depends on the material which has to be cut and in order to ensure a clean
cut the velocity at the beginning and at the end of each path has to be zero. Subject to these constraints a time optimal path
tracking solution for each path can be found and the optimal partial solutions can be connected by time optimal trajectories along
straight lines as shown in figure 2. But with an increasing number of paths to track the impact of the non-productive traversing
time introduced by these links on the overall process time is getting dominant if the sequencing is not handled properly.

x-axis

y-axis

working surface

Figure 1: Gantry laser cutting machine Figure 2: Time optimal tour
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Figure 3: Graph of closed paths

Considering a sequence of solely closed paths the start and end points coincide and since the tracking of the defined path in
between is assumed to be known and time optimal the resulting problem boils down to a traveling salesman problem where
the coordinates of the start/end points are the nodes and the connecting trajectories are the edges of a fully connected graph as
depicted in figure 3. The traveling salesman problem is a very well know NP-hard combinatorial problem, which is assumed
to be not solvable in polynomial time. Although there exist many exact algorithms to solve a traveling salesman problem like
branch-and-cut or branch-and-bound, an exact solution is getting more and more impractical with an increasing number of nodes
respectively paths, since the calculation time also contributes to the overall process time. Actually for most applications a good
approximation of the exact solution would suffice. This can be achieved efficiently by heuristic algorithms. In this work two
different heuristics are examined and compared with respect to their applicability to problems where also open paths occur.

2 Edge Weights defined by Minimum Traversing Time

In order to compute the edge weights of the fully connected graph a special metric is introduced. Since the overall goal is
to achieve a time optimal solution all the considered links connecting two points on the 2D plane have to be time optimal on
their own. Therefore the distance between two arbitrary points can be expressed by the minimum time needed to traverse a
straight line between these two points satisfying the constraints of the robotic system. On gantry systems with perpendicular axis
the minimum path time is the maximum time needed by one of the axis. The resulting distance measure satisfies the triangle
inequality as well as the remaining requirements of a metric.

3 Christofides Algorithm

The Christofides algorithm [1] is a construction heuristic based on the minimum spanning tree of the graph. The main steps of
the algorithm are: perfect matching of the vertices of the minimum spanning tree with an odd degree, combining the edges from
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the perfect matching with the minimum spanning tree, forming an Eulerian circuit on the result, converting the Eulerian circuit
into a Hamiltonian circuit by skipping repeating vertices. The total sum of the edge weights (tour length) of the so gained tour
over all nodes of the graph is guaranteed to be within 1 and 1.5 times the length of the optimal tour, if the edge weights satisfy
the triangle inequality.

As shown in [2] this algorithm can also be used to obtain a near optimal solution for problems with open paths. Therefor the
start and end points of open paths are treated as separate nodes. In order to guarantee that the open paths are traversed, the edge
weights between these nodes are set to a value less than the smallest edge weight resulting from any connecting trajectory. But as
stated in [2] this leads to the downside that the triangle inequality is no longer satisfied and the major benefit, which is the upper
bound of 150 % of the optimal tour length, does no longer apply.

4 Application of Lin-Kernighan-Helsgaun Algorithm to Time Optimal Sequencing of Open and Closed Paths

In contrast to the Christofides algorithm, which terminates once a feasible solution is found, the Lin-Kernighan algorithm modi-
fied by Helsgaun (LKH) [3] is an iteratively improving heuristic. After a preprocessing phase, essentially based on an extended
minimum spanning tree, a suboptimal initial solution is generated with any suitable and fast construction heuristic. This initial
solution is then improved by so called k-opt exchanges, which means that in every iteration step k edges of the current tour
are replaced by k other edges in order to improve the tour. Special heuristic rules are applied to decide which edges should be
removed and which edges should be used instead. This drastically reduces the according search spaces and consequently also
the calculation time. To decrease the calculation time even further the k-opt exchanges are constructed sequentially from k = 2
to k = 5. Once an improvement is found the exchange is applied immediately and the algorithm proceeds with the next iteration
step. The algorithm terminates when no further improvement of the tour length with respect to k ≤ 5 and the applied heuristic
rules can be found. This algorithm can be applied straight forward to a problem with solely closed paths. In order to use this
algorithm with open and closed paths some modifications in the problem setup and the algorithm are necessary.

In the preprocessing phase and for the heuristic rule evaluation the start and end points of an open path are represented by one
node of the graph. Whenever a distance measure related to a node representing an open path is needed all combinations of end
points are considered and the edge with the minimum weight is chosen as depicted in figure 4.

Figure 4: Definition of edges in case of open paths

However in the construction and improvement phase it has to be ensured, that exactly one edge is leading to/from either end
point of an open path. Additionally on every iteration step, whenever an edge containing a node representing an open path is
considered to be added to the current tour, a local subproblem has to be solved. This subproblem checks whether flipping the
sequential order of the two end points of the affected open path may improve the solution.

A detailed description of the full algorithm as well as the results of comparing these two heuristic approaches with the exact
solution regarding calculation time and solution quality will be presented in the full paper.
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EXTENDED ABSTRACT

1 Introduction

In this study, a benchmark problem was taken under investigation, namely a cascade of simple integrator as a plant and controlled
via delayed state feedback. One crucial property of this plant, that it has an unstable positive feedback, which requires control in
order to maintain the desired set point. A simple example could be constructed with one integrator n = 1, such as the model of
exponential growth. Another example for a double integrator n = 2, one can think of this as a simple pendulum turned upside-
down, where the pinpoint is under the rod. In both cases, the main system parameter defines the stability of the equilibrium.

It should be noted that the problem was extensively studied by many [1, 2, 3, 4], from many aspects, such as controlability,
detectability and stabilizability. Various conditions were already identified regarding stability and stabilizability of linear time
invariant systems, but generally for stable plants or without delay dependent conditions. It was shown that, for a stable chain
of integrator arbitrarily large τ ≥ 0 is admissible in order to achieve asymptotic stability [3, 4]. On the other hand, an unstable
system must be controlled to achieve the requirements, which raises the question of stabilizabilty and a bound for maximal delay.
This phenomena is usually inevitable, due to the finite speed of information propagation in any medium (solid, fluid, networks,
etc.).

2 Problem statement

Generally in control theory, the object is focused on stable or marginally stable system. The stablizability of these systems is
closely related to controlability but should not be mixed. Open loop plants can be stabilized by state feedback by choosing the
correct gains. However, time delay in the input of the closed loop system can cause unstable behavior beyond a certain point.
This can be simply explained by the fact, that the open loop system depart the equilibrium state determined by its time constant
and the controller is not able to react fast enough due to the time delay. This suggest, along with other researches [5], that there
is a connection between maximal admissible delay (τcrit) and the time constant of an unstable integrator. Time constant in this
sense is different than the one used in control theory (generally defined for stable plants), but has the same role. Now, consider
the following simple (n = 1) unstable integrator with a delayed input

ẏ1(t) = by1(t)+u(t− τ), (1)

where b > 0 is the system parameter or time constant. Introducing a chain of integrator on top of that will result in a more
complex behavior, while the stability properties and the dominant root is placed similarly on the complex plane. Eq. (1) can be
generalized for a chain of integrator (n≥ 2), such as

ẏi(t) = yi+1(t), i = 1, . . .n−1
ẏn(t) = by1(t)+u(t− τ). (2)

In order to stabilize the open loop system a suitable controller has to be designed. State feedback is proven to be effective in pole
placement, when the eigenvalues of the system are controlable. The control input is formulated as,

u(t) =−
n−1

∑
j=0

a jy j+1(t)−anẏn(t), (3)

where a j, j = 1, . . . ,n are the feedback gains. The term anẏn(t) is not necessary for stabilization, but can improve the performance
of the controller. Due to this, the governing system is a neutral functional differential system of equations. Ultimately, the goal
is to determine the relation between the system parameter b and the critical time delay. Furthermore, the concept could reflect or
even give insight on the stabilizabilty of unstable system with time delay involved in the control loop.

3 Results

In case when there is no delay τ = 0, a nth order polynomial has to be investigated. This was done already by many and conditions
are readily available for determining stability. An important observation is that, for asymptotic stability, the necessary number of
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control inputs (control gains) cannot be less than the order of the system. This can be explained by the fact, that the number of
poles are the same as the order of regular polynomials, therefor it needs at least n control variable. Assuming the delayed state
feedback, the characteristic equation of (2) can be written in a general form as,

λ n−b+ e−λτ
n

∑
j=0

a jλ j = 0. (4)

Here n represents the number of integrator in the chain or the order of the system in other words. Eq. (4) is called a quasi-
polynomial due to the delay term, i.e., infinitely many roots appear on the complex plane. The stability of neutral delay differential
equations depends greatly on the coefficient of the neutral term [6]. Therefor, a necessary condition for stabilizability is |an| ≤ 1.
Several methods exist in practice to determine the stability properties of delayed system, but usually a combination of them has
to be used to get a full picture about stabilizability. The system is, by nature, has infinitely many poles on the closed left half of
the complex plane. By rigorous analysis, one can observe that such a delayed system looses its stability in a multiplicity induced
manner [7]. At the margin of stability the system has zero roots with multiplicity of n+1. This property can be used in order to
determine the control gains as well as the critical delay. A closed formula, generalized for n integrator can be deduced as

τcrit =
n

√
n!(an +1)

b
. (5)

Another necessary condition for stabilizabilty corresponds to the delay of the input signal with regular state feedback. It is
inevitable for the controller to act faster than a critical time limit τ ≤ τcrit, in order to achieve stability. Interestingly, the critical
delay for a system described here is inversely proportional to nth root of the system parameter b.

4 Discussion

The study was focusing on a chain of integrators with an unstable open loop plant and controlled via a delayed state feedback.
The stabilizability of the system was investigated with special focus on the admissible delay. It was observed, that the maximal
delay allowed in the closed loop system depends on the system parameter of the chain as well as, on the order of the system.
Along this observation, it can be stated that the critical delay has a close connection to the rightmost root of the unstable system.
The results presented here, are specific to the model discussed. On the other hand, it can reflect on the control of higher order
system or multi-body systems. This might be straightforward, but further investigation is necessary for the generalization of the
results.
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EXTENDED ABSTRACT

1 Introduction

Conventional feedback control of robotic insertion tasks is challenging due to the presence of the contact forces. A small
misalignment between the insertion tool and socket can lead to jamming during the insertion as a result of contact forces.
Reinforcement learning (RL) has shown strong potential for learning of the control policies in challenging robot control scenarios.
In this work, we examine a potential augmentation of the conventional control with RL to avoid jamming during robotic insertion
tasks.

2 Modelling of jamming during robotic contact

Establishment of contacts between tool and socket is inevitable and slightest misalignment between the tool and socket would
lead to increasing the contact forces and eventually the tool would jam in the socket. Appropriate contact modelling methods
are needed to represent jamming in an insertion task [1] schematically shown in Fig. 1. In this work, the jamming phenomena is
modelled using the Vortex simulation environment [1]. A 3D model of the robotic arm is constructed in Vortex. Each link of the
arm is modelled as a 6 DOF rigid body and actuated joints are defined between the links to construct the arm mechanism.

Alignment and
insertion

Jammed
situation Contact 

forces

Insertion tool

Socket

(a) (b)

Figure 1: (a) Jamming of a robot tool during the insertion task, (b) Model of a robotic arm performing a contact task with
misaligned socket, which leads to jamming of the connector in the socket [1].

3 Training of an RL agent for the insertion task

An RL training environment is constructed from the insertion model outlined in the previous section. The observation space in
this environment is defined as the contact interaction force and torque components between the tool and the end effector, the joint
angles and absolute position of the end effector. On the other hand, a continuous action space is defined as added components to
the joint velocities. Based on the inverse kinematics (IK) formulation of the modelled robotic arm, angular velocities of the three
active joints during the insertion step are computed as follows:

vS =VS

vE =VE −VS

vW =−VE

(1)

where vS, vE and vW are angular velocities of shoulder, elbow and wrist joints (shown in Fig. 2), and VS and VE are angular
velocity components computed in terms of the insertion velocity and the insertion angle.
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Figure 2: DDPG agent and robotic arm environment.

The deep deterministic policy gradient (DDPG) algorithm is used in this work on the grounds that the continuous action space is
needed for this training environment (Fig. 2). A DDPG agent is an actor-critic RL agent which searches for an optimal policy with
maximum cumulative long-term reward [2]. Actions of the DDPG agent, a = [a0 a1]

T, are augmented with the joint velocities
as:

vS =VS +a0

vE =VE −VS +(a1 −a0)

vW =−VE −a1

(2)

The reward function is designed so use the absolute values of the force and torque components sensed at the end effector (inter-
action force and torque between the tool and end effector) and receive reward when the end effector advances in the predefined
motion path for the insertion. Four layers of 32 units with ReLU activation functions are used for each of the actor and critic
networks and the agent is trained with Adam optimizer for 500 episodes. Keras-rl2 [3] with TensorFlow 2 backend is used for
the DDPG agent implementation and training. Contact force and torque components are plotted in Fig. 3 for both the IK and RL
assisted cases. It can be seen that the RL agent tends to induce low amplitude vibration at the end effector which seems to ease
the insertion action. The jamming spikes at step = 240 are smaller and short-lived in the RL assisted scenario, in contrast to the
purely IK control scenario.
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Figure 3: Constraint force and torque for IK and RL assisted control of the insertion task.
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EXTENDED ABSTRACT

1 Introduction

The development of dynamic whole-body motions on complex multibody systems such as humanoid robots is a challenging task
and requires knowledge of the exact dynamic properties of the mechanical system. Consequently, much attention is paid to model
identification using multibody dynamics, initially for manipulators in the 1980s [1]. This method was extended to be applicable
to humanoid robots [2]. Subsequent work further extends this by also including joint torque information of the actuated joints [3].
Each method requires a set of trajectories with the aim to excite all the dynamics of the system in order to consequently minimize
the error in the joint torque estimation using inverse dynamics [4]. Both methods have already been compared by applying
them to a state-of-the-art humanoid [5]. A disadvantage of dynamic model identification lies in the fact that acceleration data is
approximated, which can lead to errors in parameter estimation. Furthermore, most robots, such as the one used in this work,
are not equipped with sensors to measure joint torques. It has also not yet been investigated to what extent the simultaneous
optimization of all dynamic parameters can lead to redundancies in the optimization problem. In this work we carry out a model
identification procedure on the humanoid robot REEM-C by PAL Robotics. We focus on identifying the static parameters and
update center-of-mass (COM) locations and masses so that the model best fits the experimental data, which consists of a variety
of static poses. This approach of splitting the identification of dynamic and static parameters and the use of static poses allows
for a more precise approximation of the latter. The level of model improvement is evaluated by means of a dynamic reference
motion.

2 Applied Method for Model Identification

Static poses offer the advantage of taking a measurement at a stage when the robot is almost at rest and the measurements are
nearly free of noise. One disadvantage, however, is that a large amount of poses are required. Therefore, a set of 172 static
poses of the humanoid robot REEM-C was recorded using a state-of-the-art motion capture system and external force plates. A
combination of systematic and randomly generated poses was used. We distinguish 6 categories of poses: Double-legged: feet 2
cm apart on one force plate, focus on right arm (1), feet 2 cm apart on one force plate, focus on torso joints (2), feet 2 cm apart
on one force plate crouching (3), feet 20 cm apart with both feet on one force plate, and on one force plate each (4) (Fig. 1(a, c)).
Single-legged: standing on the right leg, focus on left leg (5), standing on the left leg, focus on right leg (6) (Fig. 1(b)).

For each configuration, the individual degrees of freedom were systematically set to less than 10% and more than 90% of their
minimum and maximum joint range. In addition, at least 10 random poses were generated for the categories on both feet.

Figure 1: Three different types of static poses of the humanoid REEM-C with applied marker set on force plates with indicated
force vector: (a) standing on both feet on one force plate, (b) standing on one foot, (c) standing on both feet on two force plates.

The recorded marker data are fitted to the model using inverse kinematics. Initial experiments indicated a global position error
due to gear backlash, which propagates through the entire system when a joint configuration required the ground-projected COM
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(GCOM) to be close to the edge of the support polygon. Therefore, by fitting marker data, more accurate joint configurations are
calculated than if the internal sensor data were used. For each static pose, the GCOM obtained by the dynamic properties of the
model is compared to the GCOM obtained through force plate measurements. Their deviation is minimized by solving a least
squares problem by updating a set of static model parameters ps:

min
ps

Nm

∑
m=1
‖gGCOM(qm, ps)−GCOMREF

m ‖2 (1)

s.t. gmass(ps) = M (2)

with Nm the number of poses considered and GCOMREF
m the recorded GCOM of pose m. The functions gGCOM and gmass calculate

the GCOM of pose m specified by the recorded joint positions q and the total mass of the robot model based on the current static
parameter values ps. The measured total mass of the robot is denoted by M. The parameters consist of the mass and COM
location of the main segments of the robot: shank, thigh, pelvis, trunk, upper arm, forearm and hand. Segments consisting of
only a motor and a cover could not be considered during the optimization and were fixed at the values given in the original model,
as the change in the measured GCOM would be too small and lead to redundancies in the problem formulation. The same applies
to the head and foot segments. The optimization problem is solved with the SQP method using Gauss-Newton Hessian and a
Levenberg-Marquardt regularization term.

3 Improvement of the Original Model

During the optimization the deviation between recorded and model GCOM was reduced from (avg. 9.2 mm, std. 2.3 mm) to
(avg. 0.6 mm, std. 0.4 mm). For reference, the actual support polygon of REEM-C when standing on one leg is estimated to
be 15.5 cm × 10.6 cm, with an actual foot size of 21.0 cm × 14.0 cm. To validate the model identification a dynamic reference
motion similar to a human squat exercise was recorded and all the torques were calculated using inverse dynamics. To assess the
quality of the model we evaluated the joint torques and forces acting in the base link (residual forces), which should be 0 since
these degrees of freedom are not actuated.

Table 1: Avg. [std] residual torques and forces of the base link obtained by inverse dynamics of the squat-motion.

Model Tx [Nm] Ty [Nm] Tz [Nm] Fx [N] Fy [N] Fz [N]

Original Model 5.66 [0.98] 5.98 [4.07] 0.68 [0.48] 1.86 [1.66] 2.28 [1.72] 103.02 [4.03]

Optimized Model 0.87 [0.69] 1.35 [1.01] 0.41 [0.30] 1.86 [1.66] 2.29 [1.73] 2.68 [3.04]

Our results show a significant improvement of the model by updating the segment masses and COM locations. The unaccounted
mass of ∼10.5 kg was distributed to the respective segments thus reducing the vertical force Fz acting in the base link from
103.02 N to 2.68 N (Tab. 1). The proper distribution of masses is reflected under the concurrent substantial decrease of the
residual torques along all axes (Tx – Tz). The remaining error is most likely related to the unidentified moments of inertia, which
will be improved in future work on basis of the updated parameters.
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EXTENDED ABSTRACT 

1 Context 

The transfer of robotics into everyday life is currently accelerating, with 20 million robots expected to be in use worldwide by 

2030 [1]. However, today, there are still main obstacles for a mass transfer of robots to society, namely the limitations of dexterity, 

velocity, and accuracy [2]. Especially, high-speed robots involve significant accelerations, and usually large movements. 

Successfully performing high-speed trajectories requires either an accurate robot model or an aggressive tracking with high-gain 

feedback when the model parameters, such as frictions, inertias, masses, etc., cannot be easily computed. As stated in [3]: 

“learning to track such trajectories in a safe and reliable way, when accurate models of the arm are not available, is an open 

problem”. Even if the traditional PID is known to be stable for position control [4] and relatively easy to use, this one is not 

effective for aggressive tracking, due to the motor response times. Therefore, more complex methods have been developed for 

trajectory tracking, mainly the iterative learning control, which can be combined with movement primitives, and/or neural 

network (NN) to learn parameters and variables of the dynamic model (e.g. [3]). But two main practical problems with these 

complex methods are: 1. generalizing to many trajectories without reducing the accuracy; 2. stabilizing the torque control in 

robots due to joint friction.  

The objective of this study is to propose a control method for high-speed trajectory tracking of a robotic arm, by combining both 

a PID – stable and easy to implement – and learning the dynamic response of the PID with a NN – to predict and correct its 

errors. The effectiveness of this method has been tested with a 3D-printed 5 degrees of freedom serial collaborative robotic arm 

(or “co-bot”) developed in our laboratory.  

2 Methods 

The problem of control was defined as follows: 

1. Build a dataset of various trajectories of the robotic arm by using a PID controller for each joint. Building the dataset 

required an effective feedback of the motors to get accurate data to feed the NN. All data were composed of five variables 

for each of the five motors: the angle, 𝑞𝑖, and the angular velocity, �̇�𝑖 of a motor i at two consecutive instants t and t+δ, i.e. 

𝑞𝑖(t), 𝑞𝑖(t+δ), �̇�𝑖(t), �̇�𝑖(t+δ), and the command, 𝑢𝑖(t), sent to this motor during these two instants. 

2. Train a NN for each joint to learn the dynamic model through the response of the PID controller. As shown in Figure 1, 

four variables were used as input features for the NN: the motor angle 𝑞𝑖(t) and velocity �̇�𝑖(t) at a given instant t, and the 

position 𝑞𝑖(t+δ) and velocity �̇�𝑖(t+δ) at the next instant t+δ. The output variable, or target, from the NN was the positional 

command 𝒖𝒊(t) given to the motor during these two instants. By giving several trajectory data to the NN, this one will learn 

which command to send to each motor to go from a state [𝑞𝑖(t), �̇�𝑖(t)] to the next one, [𝑞𝑖(t+δ), �̇�𝑖(t+δ)]. In an implicit way, 

this enables to learn the dynamic model of the robotic arm. 

3. Generate a new set of commands for the motors that consider the response time of the controller to send the required series 

of command to each motor, so that these ones execute the desired trajectory. To generate the corrected series of command, 

we provide the desired 𝑞𝑖(t), 𝑞𝑖(t+δ), �̇�𝑖(t), �̇�𝑖(t+δ) as input to the trained NN. Then, the NN returned the command 𝒖𝒊(t) to 

the motor between the two instants t and t+δ. 
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Figure 1. For a given motor i: A. The given command 𝒖𝒊(t) along a trajectory, and the corresponding feedback 𝑞𝑖(t). B. Zoom 

in on these curves: feedback motor angles 𝑞𝑖(t) and 𝑞𝑖(t+δ) as feedback features for the NN at all instants t, and the 

corresponding position command ui(t) as output variable/target from the NN. 

3 Results 

For a given motor i, Figure 2A presents the error along a tracked trajectory, according to final desired positions and velocities, 

by comparing these errors between a standard PID and the proposed method combining a PID with dynamics learning by a NN. 

Figure 2B presents the time evolution of the motor angles 𝒒𝒊(t) and command 𝑢𝑖(t) in a PID, and the corresponding corrected 

𝒒𝒊(t) and command 𝑢𝑖(t) with the proposed method combining PID and NN. 

 

 

 

 

 

 
 

   A.           B.  

Figure 2. For a given motor i : A. Error along a tracked trajectory, according to final desired positions and velocities: 

comparison between a standard PID and the proposed method combining a PID and NN. B. Feedback motor angles 𝒒𝒊(t) and 

command 𝑢𝑖(t) in a PID, and the corresponding corrected feedback 𝒒𝒊(t) and command 𝑢𝑖(t) with the proposed method 

combining PID and NN. 

A variety of high-speed trajectory tracking tests with our complete serial co-bot will be presented at the conference.  

4 Discussion and conclusion 

Globally, Figure 2 illustrates the interest of adding a NN to learn the dynamic response of the motor to correct the command so 

as the motor tracks exactly a desired trajectory. Especially, Figure 2A shows that the error with the proposed method combining 

PID and NN is relatively stable compared to the simple PID, and significantly lower for large movements and/or high velocities. 

Figure 2A also shows that the NN minimizes the tracking errors, even when the motors are not powerful enough to track exactly 

the desired trajectory. In fact, the figure shows that with a classic PID, the more speed and movement are done, the greater the 

error. Figure 2B shows that using the NN, the error is nearly zero when the motors are powerful enough. The error along the 

trajectory just starts increase when the limits are reached (on the edge of the figure). These observations could contribute to allow 

a high-speed position control and to reduce the complexity of the required controller to effectively track an aggressive trajectory. 

The use of a position control is also more intuitive than a torque control. Another advantage of the proposed method is that it can 

be transposed to several robots without modification. Indeed, no dynamic model must be given to the NN: this one only requires 

an accurate feedback of various trajectories. The perspectives of this study are to make easier the command of robotic arms while 

guaranteeing solid performances, even for aggressive trajectories or robots for which a complete dynamic model is hard to obtain.  
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EXTENDED ABSTRACT

1 Introduction

In recent years, research and development of robots that exist in the same space as humans and can collaborate with humans have
been actively carried out. If the body of a robot for nursing care or home use is made of a hard material, it may cause injury.
Therefore, attempts have been made to make a robot with a soft body using rubber or resin. In order to accelerate such research
on soft robotics, it is necessary to establish high-speed and stable simulation algorithm for robots containing viscoelastic bodies
such as rubber and resin. So far, studies have been conducted to describe viscoelastic bodies by the finite element method and
incorporate them into multibody dynamics analysis, but the theory is difficult and the calculation time is enormous. Therefore,
in this study, we consider to approximate viscoelastic bodies with finite rigid body segments and connect them with joints and
linear viscoelastic elements such as Voigt model and Maxwell model to approximate viscoelastic properties. The recursive
dynamics algorithm [1] is used to speed up the calculation, and the generalization-α method [2] is used to stabilize the numerical
integration. In particular, we propose a new method on how to incorporate the Maxwell model into recursive dynamics algorithm
and generalization-α method. The effectiveness of the proposed method is confirmed by some numerical examples.

2 Recursive dynamics algorithm

As an example, consider a two-joint manipulator composed of rubber links as shown in Figure 1. If one rubber link is approx-
imated by two rigid body segments, it can be modeled as shown in Figure 2. Generally, as shown in Figure 3, the relationship
between the generalized velocity vvvi and the generalized acceleration aaai of the adjacent body i and body i−1 can be expressed as
follows.

vvvi = DDDivvvi−1 + JJJiq̇i (1)
aaai = DDDiaaai−1 + JJJiq̈i +βββ i (2)

where qi is the joint variable of the i-th joint of the model approximated by finite segments, DDDi is the transformation matrix, JJJi is
the Jacobian matrix, and βββ i = ḊDDivvvi−1 + J̇JJiq̇i. On the other hand, the relation of the generalized force QQQJ

i transmitted through the
joint i and the joint driving force τi of the i-th joint can be expressed by the following equations.

QQQJ
i = MMMiaaai +hhhi −QQQg

i +DDDT
i+1QQQJ

i+1 (3)

τi = JJJT
i QQQJ

i +Qi (4)

where MMMi is the generalized mass matrix, hhhi is the centrifugal and Coriolis force, and QQQg
i is the generalized force due to gravity.

In addition, Qi is the force due to the linear viscoelastic element. In the case of the Voigt model in which the spring and damper
are introduced in parallel as shown in Figure 4 (a), the following equation is obtained.

Qi(t) = ki(qi(t)−q0
i )+ ciq̇i(t) (5)

On the other hand, in the case of the Maxwell model in which the spring and damper are introduced in series as shown in Figure
4 (b), the following equation can be derived.

Qi(t) = e− ki
ci

t

{∫ t

0
e

ki
ci

τ kiq̇i(τ)dτ −Q0
i

}
(6)

Here, ki is the spring constant, ci is the viscous damping coefficient, and Q0
i = Qi(0). It is easy for the Voigt model, but it is not

obvious how to incorporate it into the recursive dynamics algorithm and generalization-α method for the Maxwell model. In this
paper, we propose a method of discretizing and incorporating it into calculations.

Inverse dynamics calculation can be conducted by first calculating equations (1) and (2) from i = 1 to i = N, and then equations
(3) and (4) from i = N to i = 1. By repeatedly using this inverse dynamics calculation, the generalized mass matrix MMM and the
centrifugal and Coriolis force hhh of the equations of motion in minimal form

MMM(qqq)q̈qq+hhh(qqq, q̇qq) = τττ (7)

can be calculated efficiently.
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Figure 4: Viscoelastic dynamics model added to joints

3 Numerical integration method

Since robots including viscoelastic bodies are generally stiff systems, we use the generalized-α method, which is an implicit
method with excellent stability. Divide the interval t ∈ [0, t f ] for which the solution should be found at equal intervals h such as
0 = t0 < t1 < · · · < tp−1 < tp = t f . The value of qqq(t) at time tn is expressed as qqqn. When the generalized-α method is used, the
residual of the equations of motion (7) at t = tn+1 can be expressed as follows.

eee(qqqn+1) ≡ MMM(qqqn+1)q̈qqn+1(qqqn+1)+hhh(qqqn+1, q̇qqn+1(qqqn+1))− τττn+1 (8)

From the above equation, the Jacobian matrix of the residual eee with respect to qqqn+1 can be calculated as follows.

∂eee
∂qqqn+1

= β ′MMM(qqqn+1)+ γ ′DDDt(qqqn+1)+KKKt(qqqn+1) ≡ SSS(qqqn+1) (9)

where KKKt and DDDt are matrices defined as follows.

KKKt(qqqn+1) ≡ ∂MMM(qqqn+1)

∂qqqn+1
q̈qqn+1(qqqn+1)+

∂hhh(qqqn+1, q̇qqn+1(qqqn+1))

∂qqqn+1
, DDDt(qqqn+1) ≡ ∂hhh(qqqn+1, q̇qqn+1(qqqn+1))

∂ q̇qqn+1
(10)

Once the Jacobian matrix SSS(qqqn+1) is calculated, qqqn+1, q̇qqn+1, q̈qqn+1 at the time t = tn+1 can be obtained by repeating the following
calculation until eee(qqqn+1) = 000 is satisfied within the margin of error.

SSS(qqq(k)
n+1)∆qqq(k)

n+1 = −eee(k), qqq(k+1)
n+1 = qqq(k)

n+1 +∆qqq(k)
n+1, q̇qq(k+1)

n+1 = q̇qq(k)
n+1 + γ ′∆qqq(k)

n+1, q̈qq(k+1)
n+1 = q̈qq(k)

n+1 +β ′∆qqq(k)
n+1 (11)

Iterative calculations are required at each step, and the Jacobian matrix must be calculated each time. Here, we propose a method
for calculating the Jacobian matrix at high speed and without approximation using the recursive dynamics algorithm, in order to
shorten the calculation time. From equation (10), it can be seen that KKKt and DDDt can be expressed as follows.

KKKt(qqqn+1) =
∂

∂qqq
{MMM(qqq)q̈qq+hhh(qqq, q̇qq)}

∣∣∣∣
t=tn+1

=
∂τττ
∂qqq

∣∣∣∣
t=tn+1

, DDDt(qqqn+1) =
∂

∂ q̇qq
{MMM(qqq)q̈qq+hhh(qqq, q̇qq)}

∣∣∣∣
t=tn+1

=
∂τττ
∂ q̇qq

∣∣∣∣
t=tn+1

(12)

That is, KKKt is the partial derivative of the inverse dynamics relation with respect to qqq, and DDDt is the partial derivative of the inverse
dynamics relation with respect to q̇qq. Using this, we formulate an algorithm that calculates KKKt and DDDt strictly and at high speed
based on the recurrence formula from (1) to (4) of inverse dynamics. At that time, since the calculation of ∂Qi/∂qi and ∂Qi/∂ q̇i
are also required, a new calculation method is derived.
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EXTENDED ABSTRACT 

The application of behavioural simulations (kinematic and dynamic model) in robotics have been quite popular in recent years. 

One of the important reasons is that it allows developers and researchers to predict, test and validate robotic performance before 

prototyping and production [1]. It also allows faster and easier improvement of management strategies, focused on safety and 

more cost-effectiveness.  

Using knowledge from nature, i.e. by studying and investigating the locomotion of animals helped researchers develop different 

types of so-called bio-inspired robots [2]. Among these, the most convenient is the researching of arthropods that have six legs 

and thus simply maintain their stability (insects, centipedes, symphylans, millipedes etc.). They show quite a robustness of the 

system in case of damage to the legs. One of the typical examples of the development of robots from this group is the hexapod 

robot based on the anatomy and locomotion of insects.  

Hence, researchers encounter the problem of operating such robotic systems, which are quite complex and have an increased 

number of degrees of freedom (DOF) of motion due to the performance of the legs of robots from multiple ankles (links) [2]. In 

practice, many commercial six-legged robots have already been carried out, which have found their application in many areas 

such as [3]: research in remote and inaccessible places (space, seabed, volcanoes, etc.), dangerous environments (like military 

operations), construction work, transport operations, etc.  

Therefore, in hexapod robots, two typical systems at architectures and locomotions originating from spider insects (hexagonal 

hexapod) and cockroaches (rectangular hexapod) can be found in the literature [4]. In this paper, a robot configuration based on 

a rectangular hexapod system architecture is described. The hexapod robot is a type of mobile robot that achieves its locomotion 

using six legs (three on each side of chassis), of which at least three or more legs must be on the ground to achieve their stable 

condition.  

When moving in nature, insects can use different types of gait. Inspired by this [5], the most common types of gait they can 

perform (4 typical walks) of hexapod robots are wave gait, tetrapod gait, transition gait and tripod gait. In this paper, a model of 

behaviour based on tripod gait is presented.  The reason that tripod gait is the most interesting because of movement speed. It is 

the fastest gait of insects when they maintain their body in dynamic balance [6].   

Figure 1 shows the simplified product architecture of a hexapod robot, while figure 2 shows model of one hexapod robot 

(observed) leg with all the joints and links. On this basis, kinematic analysis was done to obtain a mathematical model of the 

robot. The Denavit-Hartenberg (D-H) method [7] was used to establish the joint coordinate system of a hexapod robot for it’s 

one leg. Individual parameters on each joint and variables on joints (1 – hip joint, 2- knee joint and 3 - ankle joint) are defined, 

and the equation of motion for the leg is obtained. On each link of the open kinematic chain, right-wing orthonormal coordinate 

systems are systematically joined. As the final equation, a matrix equation is obtained, and the position of the top of the robot's 

leg relative to the coordinates of the robot's body. Solving the problem of inverse kinematics gives the values of the angles of 

rotation for each of the joints, i.e., the servo motors on them, for a given point in space at the observed robot leg.  

When planning the trajectory of the movement of hexapod robots, the movement of the robot's leg in its stance (supporting) 

phase and swing (suspending) phase, and the transfer phase should be considered throughout the moving cycle. When performing 

the behaviour of the robot, the simulation was made for flat terrain. The simulation was performed using a combination of 

MATLAB Simulink tool and Simscape Multibody environment. The last one is very acceptable for block diagram modelling 

because it allows a block view of all sensors, bodies, system elements, joints and constraints using block components from the 

Simscape™ family. It also provides the possibility of 3D displaying the animation of the dynamics of the observed robot system. 

The control algorithm is derived using a PID controller on one robot leg (in each joint). The controller’s parameters are adjusted 

on one leg of the robot, and after that, this is used to adjust the control on the other legs in this way. In joints 1 and 2 PID 

algorithm is based on position control [8] while in joint 3 is based on force control [8].  

Equations for forward dynamics which represents the relationships between the system of coordinates of the robot base (global 

system) with the base of the robot leg (leg coordinate system) (1) - (3), obtained by the Denavit-Hartenberg method and 

homogeneous transformations: 

 𝑝𝑥 = 𝑐𝑜𝑠𝜃1(𝑙1 + 𝑙2 ∙ 𝑐𝑜𝑠𝜃2 + 𝑙3 ∙ cos(𝜃2 − 𝜃3))  (1) 

 𝑝𝑦 = 𝑠𝑖𝑛𝜃1(𝑙1 + 𝑙2 ∙ 𝑐𝑜𝑠𝜃2 + 𝑙3 ∙ cos(𝜃2 − 𝜃3))  (2) 
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 𝑝𝑧 = 𝑑1 + 𝑙2 ∙ 𝑠𝑖𝑛𝜃2 + 𝑙3 ∙ sin(𝜃2 − 𝜃3))  (3) 

 

  

Figure 1: Product architecture of a hexapod robot  Figure 2: Model of a hexapod robot observed leg 

In this paper, a development of mathematical model and the control algorithm of a hexapod robot during tripod gait locomotion 

is described.  Simulation is performed using combination of MATLAB Simulink tool and Simscape Multibody environment. The 

intention is to take advantage of that, so that could be used in teaching laboratory exercises in one of the courses at the graduate 

study on Zagreb University of Applied Sciences. The mathematical model presented is derived according to a model based on 

rectangular hexapod design configuration, using PID controllers in each leg joint. During the conduct of the research it has been 

proven that a major drawback is use of a PID controller which is quite difficult to set their controller parameters. When 

developing a control algorithm, the simplest example of robot’s usage locomotion on flat terrain is taken here.  

Each leg has three joints, each joint contains a servo motor. In the starting position, angle in the joint A is set to value 0°, in the 

joint B to 45°and in joint C to value 30°. During robot moving, it is first planned to move legs 1, 3 and 5 (marked in Figure 1). 

After these legs touch the ground, the same movement is achieved by legs 2, 4 and 6 with the same amplitude and frequency of 

movement. In the presented simulation, the robot walk along a straight path of a certain distance was performed, and therefore 

the robot movement analysis was performed. 

The development and application of another regulator based on adaptive control, as well as, its application for these robots on 

uneven terrains, has been presented as several directions for future research. 

Acknowledgments 

The research presented in this paper is part of internal project „KO006-2020/1 - Establishment and equipping of laboratory for 

the course „Systems and Control Algorithms in Robotics" and „Mobile Robotics” at the Polytechnic Graduate Professional Study 

of Electrical engineering” supported by Zagreb University of Applied Sciences, Zagreb, Croatia. 

References 

[1] M. Shahriari. Design, Implementation and Control of a Hexapod Robot using Reinforcement Learning Approach”, M.Sc. 

Thesis, Kish Island, Iran, 2013. 

[2] S. Mănoiu-Olaru and M. Niţulescu. Matlab Simulator for Gravitational Stability Analysis of a Hexapod Robot. The 

Romanian Review Precision Mechanics, Optics & Mechatronics, No. 39, 2011. 

[3] J. A. Tenreiro Machado and M. F. Silva. An Overview of Legged Robots. MME 2006 – International Symposium on 

Mathematical Methods in Engineering, Ankara, Turkey, 2006. 

[4] G. Carbone and M. Ceccarelli. Legged Robotic Systems”, In: Cutting Edge Robotics ARS Scientific Book, Wien, pp. 553-

576, 2005. 

[5] R. Campos, V. Matos, Cristina Santos. Hexapod locomotion: A nonlinear dynamical systems approach. IECON 2010 - 36th 

Annual Conference on IEEE Industrial Electronics Society 

[6] X. Duan, W. Chen, S. Yu and J. Liu. Tripod gaits Planning and Kinematics Analysis of a Hexapod Robot. 2009 IEEE 

International Conference on Control and Automation, Chistchurch, New Zealand, pp. 1850-1855, 2009. 

[7] R.P. Paul. Robot Manipulators: Mathematics, Programming and Control, The Computer Control of Robot Manipulators. 

The MIT Press, Cambridge Massachusetts and London, England, 1981. 

[8] Z. Kovačić, S. Bogdan, V. Krajči. Osnove robotike. Graphis, Zagreb, Croatia, 2002. 

221



10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS

Section
OPTIMIZATION, SENSITIVITY ANALYSIS, AND PARAMETER IDENTI-
FICATION

OPTIM-1-2

222



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Sensitivity Analysis for Thermohydrodynamic Models: Uncertainty Analysis and Parameter
Estimation

Camilla Fiorini1, Bruno Després2, Maria Adela Puscas3

1 Inria Rennes - Bretagne Atlantique
Rennes, France

camilla.fiorini@inria.fr

2 Laboratoire Jacques-Louis Lions,
Sorbonne Université, Paris, France

bruno.despres@sorbonne-universite.fr

3 CEA–Saclay,
CEA/DES/ISAS/DM2S/STMF/LMSF,

Université de Paris-Saclay, France
maria-adela.puscas@cea.fr

EXTENDED ABSTRACT

Introduction

The sensitivity analysis (SA) studies are essential for many engineering applications, such as uncertainty quantification, optimal
design, and to answer what if questions, i.e., what happens to the model’s solution if the input parameters change [1]. The
sensitivity variable itself is defined as the derivative of the state (i.e., the output of the model) with respect to the parameters of
interest [2]. In the thermohydrodynamic models, the SA can be used to determine how the model response in a point is affected
by a change in initial conditions or limits, or to any other physical parameter such as the viscosity, the heat capacity, thermal
diffusivity, etc. The SA provides first-order estimates of average and variance of the velocity field when some parameters are
uncertain [3].

Sensitivity analysis

Let us consider the domain Ω in Figure 1, the Navier-Stokes system (the state system) and the boundary conditions for this
domain are: 




∂tu−ν∆u+(u ·∇)u+∇p = f Ω, t > 0,
∇ ·u = 0 Ω, t > 0,
u(x,0) = 0 Ω, t = 0,
u =−g(y)n on Γin,

u = 0 on Γw = Γobst ∪Γtop∪Γbottom,

(ν∇u− pI)n = 0 on Γout ,

(1)

where u is the velocity, p is the pressure, f the external force and g(y) the prescribed inflow condition wich depends on an
uncertain parameter a. The sensitivity variable itself is defined as the derivative of the state with respect to the parameters of
interest:

ua(x, t;a) :=
∂

∂a
u(x, t;a), pa(x, t;a) :=

∂
∂a

p(x, t;a)

The first order sensitivity system of the state system (1) is:




∂tua−ν∆ua +(ua ·∇)u+(u ·∇)ua +∇pa = fa Ω, t > 0,
∇ ·ua = 0 Ω, t > 0,
ua(x,0) = 0 Ω, t = 0,
ua =−ga(y)n on Γin,

ua = 0 on Γw,

(ν∇ua− paI)n = 0 on Γout .

(2)

Uncertainty propagation

The sensitivity can be used to give a first order estimate of the variance of the model output. In this context, a random parameter
a with a known distribution, expected value µa, and variance σ2

a is consider in the model. This can be related to the boundary
condition, viscosity, etc. Let X(x, t;a) be a physical variable, whose expected value µX and variance σ2

X we want to estimate.
Based on the Taylor expansion of X , one obtains the following first order estimates [3]:

µX (x, t) = E[X(x, t;a)]' X(x, t; µa)+E[(a−µa)]Xa(x, t;a) = X(x, t; µa), (3)

σ2
X (x, t) = E[(X(x, t;a)−µX (x, t))2]' E[(a−µa)

2]X2
a (x, t;a) = σ2

a X2
a (x, t;a). (4)

Therefore, with just two simulations, one of the state and one of the sensitivity, one can have first order estimates of the average
and the variance of the output. However, since SA is based on Taylor expansions of the state variable with respect to the parameter
of interest, these methods can be used only for random variables with a small variance.
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Numerical results

The domain used for the numerical simulations is the one in Figure 1, and the values of the parameters are: ` = 0.7, L = 2,
xD = 0.4, and d = 0.1.
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Figure 1: Domain

We consider the following parabolic inflow condition: g(y) = 4A
`2 y(y− `), where A is the maximal value of the inflow velocity,

and it is the uncertain parameter (i.e. a = A). A is a Gaussian random variable of average µA and variance σ2
A . We consider a

small inflow velocity, µA = 0.25, which corresponds to Re = 25 and leads to a stationary solution.

For this test case, we were able to make a Monte Carlo approach as well: 1300 simulations of the state were necessary. In
Figure 2, we show the 95% confidence intervals: in blue the confidence intervals are obtained with the average and variance
estimated with SA, in red with Monte Carlo. For this test case, the first order approximations provided by the SA are more than
satisfactory: with only two simulations, we obtain results comparable to the ones obtained with the Monte Carlo approach, which
requires 1300 simulations.
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Figure 2: Confidence intervals of the velocity u on the vertical cross section x = 1, with α = 0.05. Comparison between Monte
Carlo (in red) and the SA (in blue) approaches.

Conclusions

We present an efficient computational strategy to deal with problems of uncertainty propagation for the Navier–Stokes equations
based on sensitivity analysis. A classical test case of flow past a square-section cylinder is investigated in a steady regime.
The sensitivity is used to estimate the variance of the velocity field, and 95% confidence intervals are computed. A detailed
comparison with a Monte Carlo method is performed: the results of the sensitivity based method are extremely accurate, and the
computational gain is significant.
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EXTENDED ABSTRACT

1 Introduction

In this present work, the goal is to solve a time-optimal control problem regarding final constraints with a classical direct method,
e.g. the Sequential Quadratic Programming (SQP), and then evaluate the respective optimality conditions based on an indirect
optimization approach. Here, the adjoint method can be investigated for an efficient computation of the gradient of the cost
functional. Moreover, the adjoint variables can be used to evaluate the optimality conditions regarding the Hamiltonian function.
In the present paper, the time-optimal trajectory planning of a two-arm robot will be solved exemplarily by a static optimization
and the optimality conditions regarding the Hamiltonian function will be evaluated by the adjoint variables. The application will
show the easy access to the adjoint gradients and discusses the latter mentioned role of the adjoint variables in the optimality
conditions.

Optimal control theory is based on the calculus of variations and deals with finding optimal trajectories for nonlinear dynamical
systems, e.g. spacecrafts or multibody systems like robots. The works by Kelley [1] and Bryson and Ho [2] have to be mentioned
as groundbreaking in the field of optimal control theory and serve as basis for extensive subsequent research. As a special class
of time-optimal control problems considering final constraints one can cite the control of a robot arm designed in such a way that
the time for a rest-to-rest maneuver becomes a minimum. Following an indirect approach, such problems can be transformed
into a two-point boundary value problem, which usually can be solved by shooting methods or full collocation. Alternatively,
a direct approach can be pursued, where the boundary value problem is posed as a nonlinear programming problem method
see e.g. [3] for the time-optimal trajectory planning accounting for continuity required to respect technological limits of real
robots. An alternative to the mentioned methods is offered by gradient methods, which are regarded as particularly robust with
respect to initial controls. The pioneering work by Bryson and Ho [2] shows how the gradient can be computed straightforward
using adjoint variables. With this gradient information optimal control problems can be solved iteratively by the use of nonlinear
optimization routines.

2 Theory and Objective

A special class of time-optimal control problems for dynamic systems is solved by Eichmeir et al. [4] by the adjoint method, in
which the final state of a system is given by a scalar transversality condition. In a more recent work [5], additional influence
differential equations are introduced beside the adjoint system, in order to relate the control variations with the error in the final
conditions. This coupling in the canonical (adjoint and influence) equations is summarized briefly here. Considering a nonlinear
dynamical system of the form

ẋ(t) = f(x(t),u(t)) and x(t0) = x0, (1)

where u(t) ∈ Rm denotes the vector of control inputs and x(t) ∈ Rn the vector of state variables. The control has to be found
such that the state variables at the final time tf ∈ R+ satisfy q given final conditions. The Hamiltonian for time optimal controls
can be formulated using a penalty function P (x(t),u(t)) introducing additional state and/or control constraints:

H(x(t),u(t)) := 1 + P (x(t),u(t)) + λTf(x(t),u(t)) (2)

in which λ = λ(t) =
(
p(t) +R(t)ν

)
exploits the decoupling of boundary conditions of the state and the adjoint equations [5]

by introducing a set of so-called influence adjoint variables R(t) ∈ Rn×q and adjoint variables p(t) ∈ Rn. Moreover, ν ∈ Rq

is a vector of multipliers to combine both set of adjoint variables. This decoupling within the multiplier λ enables sequential
integration of a new set of canonical equations forward and backward in time, depending on a putative optimal control history.
Finally, the solution p(t) and R(t) of the canonical (adjoint and influence) equations are combined to determine the Hamiltonian
in Eq. (2). Hence, the optimality conditions according to the Hamiltonian are evaluated in terms of the adjoint variables. The
objective of the present work is the discussion of these optimality conditions regarding the minimum time solution derived by an
alternative optimization approach, e.g. computed by a nonlinear programming strategy.

Here, one major criterion for solving optimal control problems using a discretization scheme is the parametrization of the control
history u(t). In general, any control parametrization which maps a set of parameter values to the continous control history, as

225



e.g. in the case of spline parametrization, can be used. In the special case where the control appears linearly in the underlying
differential equation and therefore also in the Hamiltonian, the control which leads to the minimal operation time becomes a bang-
bang structure. In this case, two different scenarios can occur: either the control has singular arcs or the control takes values of
given bounds. Hence, the control u(t) can be parameterized by z = (z1, . . . , zN , tf )

T in which N is the number of parameters
to be identified and tf is the final operation time. Possible parametrization may be spline parametrization or switching point
optimization. These set of parameters can be optimized with a direct approach and in case of bang-bang controls, the optimal
solution leads to roots in the switching function

hi(t) = fTui

(
p(t) +R(t)ν

)
, i = 1, . . . ,m. (3)

Note that the switching function is given in terms of the adjoint variables of the indirect approach and can now be used to evaluate
the solution of the direct approach.

3 Example

The problem of trajectory planning of a robot arm in minimal time is transformed into a static parametric optimization problem
by discretization of the control. Unknown quantities of the optimal bang-bang control for the joint torques u1(t) and u2(t) are
the switching points and the final time for a rest-to-rest-maneuver of the tool center point (TCP) of the robot, see Fig. 1(a). The
optimization is carried out with the SQP algorithm with the set of parameters z with m = 2. The resulting drive signals are

'2(t)

'1(t)

l1

l2

u1(t)

u2(t)

s1

s2
Tcp

(a) (b)

Figure 1: (a) Analyzed two-arm robot and (b) optimized bang-bang controls and associated switching function.

depicted in Fig. 1(b) in which the normalized time scale is used. One can observe that the switching points computed by the
static optimization appear exactly at the times where the switching functions in Eq. (3) computed by the adjoint variables produce
zeros. Note that the switching function has been evaluated with the result of the direct approach.

Acknowledgments

Philipp Eichmeir acknowledges support from the Austrian Research Promotion Agency (FFG): 875421. Daniel Lichtenecker and
Karin Nachbagauer acknowledge support from the Technical University of Munich – Institute for Advanced Study.

References

[1] H. J. Kelley, “Method of gradients,” pp. 206–254, Optimization Techniques with Applications to Aerospace Systems, Vol 5
of Mathematics in Science and Engineering, Academic Press, New York, 1962.

[2] A. E. Bryson and Y. C. Ho, Applied Optimal Control. Hemisphere, Washington, DC, 1975.

[3] A. Reiter, A. Müller and H. Gattringer, “On higher order inverse kinematics methods in time-optimal trajectory planning for
kinematically redundant manipulators,” IEEE Trans. Industr. Informatics, vol. 14, no. 4, pp. 1681–1690, 2018.

[4] P. Eichmeir, T. Lauß, S. Oberpeilsteiner, K. Nachbagauer, and W. Steiner, “The adjoint method for time-optimal control
problems,” J. Comput. Nonlinear Dynam., vol. 16, no. 2, 2020.

[5] P. Eichmeir, K. Nachbagauer, T. Lauß, K. Sherif, and W. Steiner, “Time-optimal control of dynamic systems regarding final
constraints,” J. Comput. Nonlinear Dynam., vol. 16, pp. 1–11, 2021.

226



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Discrete Adjoint Approach for the Sensitivity Analysis of an Augmented Lagrangian Index-3
Formulation with Projections

Álvaro López Varela, Daniel Dopico Dopico, Alberto Luaces Fernández.

Laboratorio de Ingeniería Mecánica
Universidade da Coruña

C/ Mendizábal s/n, 15403, Ferrol, Spain
[alvaro.lopez1,ddopico,aluaces]@udc.es

EXTENDED ABSTRACT

1 Introduction

Different mechanical applications, as optimal control and design optimization, require the evaluation of the impact of different
parameters in the response of a mechanical system. This variation can be measured through a sensitivity analysis.

The sensitivity analysis of the dynamics of multibody systems can be computed with different methods, from the simplest finite
differences to the more complex analytical methods involving direct differentiation [1, 2] or the adjoint variable method [3]. In
a sensitivity analysis, three key properties of the calculation must be considered: the accuracy, the computational time and the
generality of the expressions for any multibody system. Some calculations like finite differences, could give poorly accurate
solutions involving a high consumption of computational time, especially with a large set of parameters. On the other hand,
analytical calculations are usually faster and more accurate, but a generalization is not always easy to implement.

The analytical sensitivities can be focused from two different points of view: the forward sensitivity calculations, for which the
derivatives of the states must be calculated through the direct differentiation of the expressions of the dynamics; and the adjoint
variable method, which only requires to calculate a set of new variables, namely, the adjoint variables.

Recently, the adjoint sensitivity analysis of an augmented Lagrange index-3 formulation with velocity and acceleration projec-
tions was developed in [3], considering the equations of motion as continuous in time. The continuous approach constitutes a
general method to compute the sensitivity analysis of a multibody system, but it has as main drawbacks the complexity of the
initialization of the adjoint variables and the presence of time derivatives of the mass and projection matrices.

In this work, a different approach based on the use of the discrete derivatives of the equations of motion to build the adjoint
system of the augmented Lagrange index-3 formulation with projections is developed and tested in a benchmark model (five-
bar). The computation of the discrete analytical approach has been implemented in the multibody system library MBSLIM for
natural coordinates models.

2 Problem statement

Let us consider a multibody system modeled with q∈Rn dependent natural coordinates related by ΦΦΦ∈Rm holonomic constraints.
Applying the ALI3-P scheme, the following equations of motion are achieved:

Mq̈∗+ΦΦΦT
q

(
λλλ ∗(i+1)+αααΦΦΦ

)
= Q , (1)

λλλ ∗(i+1) = λλλ ∗(i)+αααΦΦΦ; i > 0 , (2)

where M ∈Rn×n is the mass matrix of the system, ΦΦΦq ∈Rm×n is the jacobian matrix of the constraints, Q ∈Rn is the vector of
generalized forces and λλλ ∗ ∈Rm the Lagrange multipliers.

In this formulation, the fulfillment of the constraints in velocities and accelerations is imposed with velocity and acceleration
projections:

(
P̄+ ςΦΦΦT

qαααΦΦΦq
)

q̇ = P̄q̇∗− ςΦΦΦT
qαααΦΦΦt , (3)

(
P̄+ ςΦΦΦT

qαααΦΦΦq
)

q̈ = P̄q̈∗− ςΦΦΦT
qααα
(
Φ̇ΦΦqq̇+ Φ̇ΦΦt

)
, (4)

where P̄ is a symmetric projection matrix, and the superscript ∗ indicates that the correspondent term is an unprojected magnitude.

Let us consider an objective function expressed as an integral in time:

ψ =
∫ tF

t0
g(q, q̇, q̈,λλλ ,ρρρ)dt. (5)

The sensitivity analysis of the objective function with respect to a set of parameters ρρρ ∈Rp can be computed applying the adjoint
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method to the objective function using the equations solved in the dynamics, leading to the following Lagrangian:

L = ψ−
∫ tF

t0
µµµT (Mq̈∗+ΦΦΦT

q
(
λλλ ∗+αααΦΦΦ

)
−Q

)
dt−

∫ tF

t0
µµµT

ΦΦΦΦΦΦdt

−
∫ tF

t0
µµµT

Φ̇ΦΦ

([
P̄+ ςΦΦΦT

qαααΦΦΦq
]

q̇− P̄q̇∗+ΦΦΦT
qςαααΦΦΦt

)
dt−

∫ tF

t0
µµµT

Φ̈ΦΦ

([
P̄+ ςΦΦΦT

qαααΦΦΦq
]

q̈− P̄q̈∗+ΦΦΦqςααα
(
Φ̇ΦΦqq̇+ Φ̇ΦΦt

))
dt.

(6)

Observe that an index-3 formulation was used in the adjoint instead of the augmented Lagrange index-3 in order to avoid the La-
grange multipliers iterations, thanks to the lemma 4.3 presented in [3]. The resulting Lagrangian has 4 arrays of adjoint variables,
correspondent to the index-3 part of the dynamics (µµµ and µµµΦΦΦ), and to the projections of velocities (µµµΦ̇ΦΦ) and accelerations (µµµΦ̈ΦΦ).

The main change with respect to the continuous approach consists in the use of the discrete derivatives of the previous Lagrangian,
applying a numerical integrator in order to express q̇∗ and q̈∗ in terms of q. This process eludes the integration by parts used in
[3] which entails the addition of new terms at times t0 and tF and which complicates the initialization of the adjoint variables.
The application of the integrator expressions instead of an integration by parts has, however, as bigger drawback the appearance
of these integrator expressions in the final adjoint equations.

The discrete adjoint equations are reached by means of considering subsequent steps of time and nullifying the terms multiplying
the unknown sensitivities of the states generated during the derivation of (6). In this approach, instead of time integration of
variables, an accumulative term from time ti to time ti−1 appears, working as linkage among consecutive instants of time.

The non-existence of dynamic equations further than time tF allows a much simpler initialization of all the adjoint variables than
the continuous approach, with the only need of nullifying the accumulation terms previously commented. The same equations of
any instant of time are used in this initialization process.

3 Numerical experiments

2

1 3

A B

1
m

1
m

1,5 m1,5 m

1 m 1 m 1 m

k1=100
k2=100L01
L02

Figure 1: Five-bar mechanism

The test case solved in this work is the five-bar mechanism of Fig. 1 described in [4, 5], with the coefficients of two external
actuator torques applied on the joints of the two bars attached to the fixed bar as sensitivity parameters, and with an objective
function describing the error between the trajectory described by point r2 and a reference set of values. This problem is presented
as an optimal control test.
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EXTENDED ABSTRACT

1 Introduction

In the field of input optimization problems, the focus lies on finding the kinematic (position, angle,...) or load (force/torque) input
signal that minimize a predefined objective function. Often employed objective functions are energy consumption, time needed
to transition between two predefined multibody configurations, following a predefined trajectory, etc... The design parameters
are defined by the parametrization of the input signal, and in general results in a large design space for non-trivial input signals.
Input optimization routines often employ sensitivity information in order to obtain faster convergence. However, the generation
of this information comes at a cost, which depends on the employed sensitivity method. There exist a variety of methods, of
which finite differences, direct differentiation (DDM) [1], the Adjoint Variable Method (AVM) [2] and automatic differentiation
[3] are most notable. The efficiency and accuracy of these methods with respect to each other, depend heavily on the problem
which needs to be optimized.
In this work, the authors focus on the AVM method for obtaining the sensitivity information for optimization problems in the
field flexible multibody models. This method is highly accurate and the computational complexity is relatively independent to
the size of the design space, making it highly suitable for problems with a relatively large amount of design parameters such
as input optimization problems. However, the method also comes with the drawback of a high implementation complexity,
and data-storage of the state vector from the forward simulation, that is used during during the backwards integration of the
adjoint equations to obtain the adjoint variables. However, by properly choosing the underlying multibody formulation, several
drawbacks of the adjoint method can be mitigated. Because, the structure of the equations of motion influences the resulting
adjoint equations and the necessary Jacobians that need to be computed. Therefore, one of the key focus points of this work is the
proposal to leverage on the Flexible Natural Coordinate Formulation’s (FNCF) simple equation of motion structure. Literature on
input optimization problems using the adjoint variable method and the well known Floating Frame of Reference (FFR) multibody
formulation is yet available in [4, 5, 6].

2 Flexible natural coordinate formulation (FNCF)

By employing an appropriate (flexible) multibody formulation for which the terms in the adjoint equations drop out, or are of
low complexity, the computational and implementation cost of computing the terms appearing in the adjoint equations every
time-step, can be reduced. Therefore, the authors employ the FNCF[7]. The specific equation structure obtained through FNCF
reduces the complexity of the AVM as the simulation derivatives can be readily obtained and are of limited order. This formulation
combines the advantageous properties of the FFR method [8] and the Generalized Component Mode Synthesis (GCMS) method
[9].
The FNCF method employs the generalized coordinates of the FFR method to describe the flexible deformation in a local
frame, leading to a constant reduced stiffness matrix, hence no non-linear terms in the equations of motion related to a non-
constant stiffness matrix, as is the case using GCMS. Furthermore, the FNCF method employs also the generalized coordinates
of the GCMS method, that describe the rigid body motion and flexible deformation in a common inertial frame. The use of the
GCMS generalized coordinates results in the drop-out of the gyroscopic forces, obtaining a constant reduced mass matrix. The
generalized coordinates describing the flexible deformation in a local frame and in a common inertial frame are interdependent.
These dependencies are taken into account by introducing the necessary algebraic constraint equations. It must be noted that the
redundancy in the flexible coordinates is a disadvantage of this approach, as it leads to increased degrees of freedom. This leads
to an increase in computational cost of the factorization during numerical integration and increased data-storage. The equations
of motion using FNCF can be written as follows:

{
Mq̈+ ∂φφφT

∂q λλλ = fgra −Cq̇−Kq+ fext + fint

φφφ = 0
(1)

where the system mass matrix M, stiffness matrix K, damping matrix C and gravitational force fgra are constant in the equations
using FNCF. The terms fext and fint are respectively the generalized external and internal forces on the generalized coordinates
q. The constraint equations φφφ have a quadratic dependence on the generalized coordinates, the associated Lagrange multipliers
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are denoted by λλλ . Because of the properties of FNCF, various terms that appear in the adjoint equations such as M̈, Ṁ, ∂M
∂q ,

∂C
∂q , ∂K

∂q and fgra
∂q , drop out. The simple kinematics of FNCF leads to first order partial derivatives ∂R

∂q and ∂u
∂q which are constant,

and thus second order partial derivatives which are eliminated. Resulting in simple projection matrices from the forces onto
the generalized coordinates. Furthermore, the first order derivatives of the constraint equations ∂φφφ

∂q are linear in the generalized

coordinates, second order derivatives ∂ 2φφφ
∂q2 are constant terms.

3 Optimization process & results

The methodology is illustrated for an input optimization problem on a flexible slider-crank multibody mechanism. In this case,
the torque delivered from the motor driving the crank will be optimized such that the resulting motor shaft’s velocity matches a
predefined (reference) signal as close as possible, as shown in Figure 1b. In order to assess the result of the optimization process,
the reference velocity signal has been generated using a known torque input signal, meaning that the optimization process should
be able to reproduce the torque signal, which is the case as illustrated in Figure 1a. Furthermore, a validation of the sensitivity
information has been performed via a comparison with the finite differences approach.

Figure 1: Reference and optimized time signals
4 Conclusion

This work illustrates the usage of AVM and FNCF for generating sensitivity information for input optimization problems of
flexible multibody systems. The specific equation structure obtained through FNCF reduces the complexity of the AVM as the
simulation derivatives can be readily obtained and are of limited order. The methodology has been illustrated on a flexible slider
crank mechanism where a torque signal is found such that a predefined angular velocity signal is achieved.

Acknowledgments

Internal Funds KU Leuven are gratefully acknowledged for their support.

References

[1] E. J. Haug, R. A. Wehage, and N. K. Mani, “Design sensitivity analysis of large-scale constrained dynamic mechanical systems,” Journal
of Mechanical Design, Transactions of the ASME, vol. 106, no. 2, pp. 156–162, 1984.

[2] E. J. Haug, “Design Sensitivity Analysis of Dynamic Systems,” in Computer Aided Optimal Design: Structural and Mechanical Systems
(S. C. A. Mota, ed.), pp. 705–755, Springer Berlin Heidelberg, 1987.

[3] C. H. Bischof, “On the Automatic Differentiation of Computer Programs and an Application to Multibody Systems,” in Solid Mechanics
and its Applications, pp. 41–48, Springer, Dordrecht, 1996.

[4] S. Oberpeilsteiner, T. Lauss, K. Nachbagauer, and W. Steiner, “Optimal input design for multibody systems by using an extended adjoint
approach,” Multibody System Dynamics, vol. 40, no. 1, pp. 43–54, 2017.

[5] T. Lauß, P. Leitner, S. Oberpeilsteiner, and W. Steiner, “Energy Optimal Manipulation of an Industrial Robot,” vol. 43, no. 0, pp. 2–3, 2015.
[6] D. I. T. Lauß, “Optimal Control of Multibody Systems using the Adjoint Variable Approach,” no. July, 2019.
[7] M. Vermaut, F. Naets, and W. Desmet, “A flexible natural coordinates formulation (FNCF) for the efficient simulation of small-deformation

multibody systems,” International Journal for Numerical Methods in Engineering, vol. 115, no. 11, pp. 1353–1370, 2018.
[8] A. A. Shabana, Dynamics of multibody systems, vol. 9781107042. 2013.
[9] J. Gerstmayr and J. A. C. Ambrósio, “Component mode synthesis with constant mass and stiffness matrices applied to flexible multibody

systems,” International Journal for Numerical Methods in Engineering, vol. 73, pp. 1518–1546, mar 2008.

230



 
 

ECCOMAS Thematic Conference on Multibody Dynamics 
December 12- 15, 2021, Budapest, Hungary 

Shape Optimization In Time Variant System Through Multibody Dynamics Analysis 
Koki Akeno, Rohit Arora and Hiroyuki Kanazawa 

 
Machinery Research Department 

Research & Innovation Center 
Mitsubishi Heavy Industries, 676-0008, Hyogo, Japan 

koki.akeno.xv, rohit.arora.y8, hiroyuki.kanazawa.57@mhi.com 

 

EXTENDED ABSTRACT 

1 Introduction 

Shape optimization of contact interface under dynamic loading using FEM analysis is computationally expensive [1]. On the 
other hand, multibody dynamics analysis tools have been widely used to analyze time variant phenomena and contact forces 
between interconnected parts in a system. In this paper we developed part shape optimization tool by combining multibody 
analysis software, a CAD modification software, and an optimization software and used it reduce the operating torque over whole 
time domain simulation. 

2 Development and Evaluation of Part Shape Optimization Tool 

In order to search optimized shape of a part with time variant boundary conditions, an optimization system is developed. Proposed 
part shape optimization system consists of 3 tools: a multibody dynamics (MBD) simulation software to numerically analyze the 
time variant phenomena, a 3D CAD modification tool to create a new CAD from shape parameters and an optimization software 
to calculate the new shape parameters from MBD analysis result. 

To evaluate proposed method, a part shape optimization of main lever (figure 1) is conducted. In the given system, the opening 
degree of the dampers determined by the rotation angle of the main lever. For the MBD analysis, the main lever and the dampers 
on which the fluid force calculated by CFD is applied are modeled and analyzed with MSC.ADAMS. The dampers rotate 
according to the rotation angle of the main lever by moving the pin of the link connected to the damper in the slots of the main 
lever. The open source optimization tool DAKOTA [2] evaluates the objective function to minimize the average torque and 
calculate the shape parameters (length L1 and L2 of links) for next step. Then new CAD of the main lever which has slots 
corresponding to the parameters is created by Open Cascade and ADAMS model is updated. 

 

 
Figure 1: Part Shape Optimization Flow chert 

3 Results 

Figure 2 shows the time history of torque (a), average torque magnitude corresponds to 2 parameters used for optimization (b) 
and optimized slot shape (c). Time history of torque shows the torque of optimized design is smaller over the entire time domain 
and does not overshoot the NG area for design. And, optimized parameter combination and the optimized slot shape are obtained 
through the optimization loop. 
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     (a) Time history of the torque       (b) Scaled average torque corresponds to 2 parameters    (c) Optimized slots shape 

Figure 2: Slots Shape Optimization Results 
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EXTENDED ABSTRACT

1 Introduction

Three wheeled tilting vehicles are an alternative to common bicycles. The dynamics ot such a vehicle can be made similar to the
bicycle dynamics, nevertheless the system offers wider configuration and desing possibilities with a larger variety of behaviors.
The simpler and safer strategy is to design the vehicle to mimic the “equivalent” bicycle dynamics, but even in this case the
engineer must face additional design problems compared to a common bicycle design.

The steering optimal design of the tadpole tilting three wheeled vehicle multibody model shown in Figure 1 is not an easy task.
The steering system should satisfy Ackerman’s steering condition, not only for null roll angles (the typical design for a car
steering) but also for any combination of roll and steering angles. Moreover, the relation between the handlebar rotation and
the wheels angles should be adjusted. In case we wish to mimic a standard bicicle behavior, this relation mus be approximately
equivalent to the single handlebar-wheel mount of a common bicycle.

In this work, the optimization of the mentioned vehicle, paying especial attention to the steering system is addressed. Several
optimization problems are solved: first the kinematic design optimization of the steering; second the dynamic optimization of the
steering, equivalent to the kinematic optimization but solved under dynamic conditions, making possible to desing the system to
real-drive situations; third, the optimal design of the system, which can be used to program some maneuvers for the dynamical
design optimization. All the optimizations performed are gradient-based, they are solved under the same general framework and
rely on the multibody sensitivity equations using two approaches: direct sensitivity for optimal design and adjoint sensitivity for
optimal control.

2 Kinematic problem statement

Let us consider a multibody system modeled with q ∈Rn dependent coordinates related by ΦΦΦ ∈Rm holonomic constraints. Only
d coordinates out of the full set of n are independent and they can be chosen as degrees of freedom of the system, z ∈ Rd . The
kinematic equations at position level can be represented as:

[
ΦΦΦ{i}q

B

]
∆q{i+1} =

[
−ΦΦΦ{i}

0

]
; i = 0,1,2, ..., (1a)

∆q{i+1} = q{i+1}−q{i} (1b)

ΦΦΦ{i} = ΦΦΦ
(

t,q{i},ρρρ
)

(1c)

Observe that the constraint equations depend on some design parameters, normally local coordinates of points or vectors defining
the model. These parameters are of interest for the optimization to accomplish.

3 Dynamic problem statement

Let us consider a multibody system modeled with q∈Rn dependent natural coordinates related by ΦΦΦ∈Rm holonomic constraints.
Consider the dynamics of the system dependent on some parameters ρρρ ∈Rp, being some of them design parameters, i.e., local
coordinates of points, parameters related to masses or forces; while some others can be control function parameters affecting
forces or rheonomic constraints. All of them, design parameters and optimal controls, are considered under the same framework.

The equations of motion for the system can be represented as:

Mq̈∗+ΦΦΦT
q

(
λλλ ∗(i+1)+αααΦΦΦ

)
= Q (2)

λλλ ∗(i+1) = λλλ ∗(i)+αααΦΦΦ; i > 0 (3)

where M∈Rn×n is the mass matrix of the system, ΦΦΦq ∈Rm×n is the jacobian matrix of the constraints, Q∈Rn is the generalized
forces vector and λλλ ∗ ∈Rm the Lagrange multipliers.
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In this formulation, the fulfillment of the constraints in velocities and accelerations is imposed with velocity and acceleration
projections:

(
P̄+ ςΦΦΦT

qαααΦΦΦq
)

q̇ = P̄q̇∗− ςΦΦΦT
qαααΦΦΦt (4)

(
P̄+ ςΦΦΦT

qαααΦΦΦq
)

q̈ = P̄q̈∗− ςΦΦΦT
qααα
(
Φ̇ΦΦqq̇+ Φ̇ΦΦt

)
(5)

Where P̄ is a symmetric projection matrix, and the superscript ∗ indicates that the correspondent term is an unprojected magnitude.

4 Optimization and optimal control problem statement

Let us consider a set of objective functions, ψψψ ∈Ro , expressed as integrals in time:

ψψψ =
∫ tF

t0
g(q, q̇, q̈,λλλ ,ρρρ)dt. (6)

The sensitivity analysis of the objective functions with respect to the set of parameters ρρρ ∈ Rp can be computed by means of
direct sensitivity or adjoint sensitivity methods and using the kinematic or the dynamic equations presented before [1, 2].

5 Numerical experiments

The case study for optimal design and optimal control is the tilting three wheeled vehicle shown in Figure 1. The optimal design
can be accomplished by means of a kinematic analysis in positions or by means of a dynamic analysis in order to better optimize
for the service conditions of the vehicle.

The objective functions considered enforce the satisfaction of Ackerman’s steering principle and the relation between the handle-
bar rotation and the effective steering angle. For the dynamic simulation, the degrees of freedom of the vehicle are predetermi-
nated and the optimization is carried out over this prescribed motion, but for the dynamic simulation, an optimal control function
will be added to force the vehicle to fit the desired trajectory and speed, controlling the handlebar and pedals.

Figure 1: Three wheeled tilting vehicle.

6 Conclusions

The present work proves that the approach proposed is a valid approach to improve the design of mechanical systems using
kinematics or dynamics simulations. Moreover, the optimal control is also considered and both types of problems can be solved
together under the same framework.
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EXTENDED ABSTRACT

1 Introduction

Among all optimal control tasks, the computation of time optimal trajectories is the supreme discipline. If the controlappears
linear in the state equations and therefore also linear in the Hamiltonian, two cases can be considered for minimum time problems;
either the control is singular or of thebang-bangtype. In this article, we want to pay special attention to thelatter, non-singular
case, considering bounded (linear) inputs where only the switching points are unknown. We consider a nonlinear dynamical
system of the form

ẋxx(t) = fff (xxx(t),uuu(t)), xxx(t0) = xxx0. (1)

whereuuu(t) ∈ Rm denotes the vector of control inputs andxxx(t) ∈ Rn the vector of state variables. The initial statesxxx0 are specified
and we are interested in problems where a control has to be found such that the state variables at the final timet f satisfy the
(auxiliary) conditions

φφφ (xxx(t f ), t f ) = 000, φφφ : Rn ×R → Rq, (2)

and a cost functional of the form

J =

∫ t f

t0

[
1+ Π(xxx(t))

]
dt, (3)

is minimized. Here,Π(xxx(t)) is a penalty function in order to introduce additional stateconstraints. The time optimal control can
be obtained by solving a two-point boundary value problem which is usually hard to solve. Hence, we pursue an iterative method
by computing the gradients of the cost functionalJ from Eq. (3) and of the functionφφφ from Eq. (2) with respect to the control.
This main idea is inspired by the gradient technique by Bryson and Ho [1].

2 Gradient Computation

A variationδui(t) of the bang-bang controlui(t), results from a variation of the switching timest = ti,1 . . . ti,Ni , whereNi is the
total number of switching points associated toui . Since eitherui = ui,min or ui = ui,max, the difference between a disturbed control
u∗

i (t) and the original signalui(t) is defined by the shiftδ ti,k of the switching points as follows:

δui(t) =

{±ūi for t ∈
[
ti,k; ti,k + δ ti,k

]

0 otherwise,
(4)

whereūi = ui,max− ui,min. The negative sign of ¯ui has to be taken if the control switches fromui,min to ui,max and the positive
sign for a switch fromui,max to ui,min at ti,k. The control has to be found such that the state variables at the final timet f satisfy
the given final conditions. In the present approach, a decoupling of the boundary conditions of the state and of the conventional
adjoint equations is proposed by introducing new adjoint variablesppp(t) ∈ Rn and a set of so-called influence adjoint variables
P(t) ∈ Rn×q from which the variations of the cost functional and the auxiliary conditions

δ J̄ =
l

∑
i=1

Ni

∑
k=1

±ūi

(
pppT fff ui

)∣∣∣
t=ti,k

δ ti,k +
(
1+ Π(xxx(t f ))

)
δ t f δ φ̄φφ =

l

∑
i=1

Ni

∑
k=1

±ūi

(
PT fff ui

)∣∣∣
t=ti,k

δ ti,k + φ̇φφ f δ t f , (5)

can be computed. Note that we have introducedφ̇φφ f as the total time derivative ofφφφ at t = t f , and fff ui
as the partial derivative

of fff with respect toui. The variations show the direct influence ofδ ti,k andδ t f on δJ andδ φ̄φφ . Therefore, the updates can be
computed directly by

δ t f = −κ
(

1+ Π(xxx(t f ))+ νννTφ̇φφ f

)
and δ ti,k = ∓κ ūi

(
fTui

p+ fTui
Pννν

)∣∣∣
t=ti,k

, (6)

whereκ defines the update step size fort f andti,k. The adjoint variablesppp(t) can be computed by a linear time-variant final
value problem which can be solved backwards in time. Analogously, the influence adjoint variablesP(t) have to be solved
from one set ofn ordinary differential equations for each component of the final conditionφφφ (x(t f ), t f ) = 0. The vectorννν ∈ Rq

includes multipliers which are determined such that the variationsδ ti,k andδ t f result in a better approximation of the constrained
optimum. For an elaborate derivation of the algorithm see [2].
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Figure 1: Cart double pendulum

3 Dynamic Model

In order to apply the proposed theory, we are looking for the excitation forceu(t) of a cart which is required to swing up a double
pendulum in the upper rest position in minimal time. The system under consideration is depicted in Fig. 1 and the results of the
time optimal solution are summarized in Fig. 2.
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Figure 2: Results: (a) Time optimal bang-bang control (b) Convergence (c) Trajectory of the swing-up maneuver
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EXTENDED ABSTRACT

1 Introduction

The method of flexible multibody systems is a powerful tool for the analysis of compliant mechanisms. The currently most
widely used method to describe flexible bodies is the floating frame of reference approach. It is well suited to perform topology
optimizations of flexible bodies since their deformations are approximated by global shape functions, which are often obtained
from finite element models using model reduction techniques. These finite element models, however, can be directly reused in
the formulation of topology optimization problems.

rigid body

actuator
spring

flexible body

joints

y(t,x),z(t,x) ∈ Rr (redundant position and veloc-
ity variables)

λ (t,x) ∈ Rnc (Lagrange multipliers)
x ∈ Rh (vector of design variables)

KR := ẏ−Z(y)z =  (kinematic relation)
EM :=M(y,x)ż−f(t,y,z,x)−CTλ =  (kinetic equations)

c(t,y,x) =  (constraint equations).

Figure 1: Schematic representation (left) and system equations (right) of flexible multibody systems

A schematic representation of a flexible multibody system and the system equations are summarized in Fig. 1. Thereby, Z is the
kinematic matrix, M the global mass matrix, f comprises the generalized inertia forces, elastic forces, and the applied loads,
and C is the Jacobian matrix of the constraint equations c.

2 Topology Optimization of Flexible Bodies

To find the optimal topology of a flexible body, the modified Solid Isotropic Material with Penalization (SIMP) approach sug-
gested in [2] is used. In this approach, the design domain is discretized and the stiffness Ei and density ρi of each subdomain i is
penalized by a continuous design variables xi as shown in Fig. 2.

ρi(xi) =

{
cxq

i ρ0 for xmin = 0.01≤ xi < 0.1,
xiρ0 for 0.1≤ xi ≤ 1,

Ei(xi) = xp
i E0

solid element
(xi = 1)

void element
(xi = xmin)

Figure 2: Material parameterization (left) of meshed design domain (right)

From the assembled mass matrix M̄(x) and stiffness matrix K̄(x) of the finite element model, global shape functions Φ(x) can
be determined using, for instance, simpel modal truncation.

3 Design Evaluation and Sensitivity Analysis of Flexible Multibody Systems

The integral compliance of the flexible body

ψ =

t1∫

t0

qTK̄q︸ ︷︷ ︸
F

dt (1)

is taken as objective function in the optimization. Thereby, q and K̄ are the elastic coordinates and modally reduced stiffness
matrix of the flexible body, respectively.

237



For efficient topology optimizations, the gradient ∇ψ(x) = dψ/dx of the criterion function (1) is required. However, its com-
putation is tedious since the state variables, which follow from the solution of the system equations, depend not only on time but
also on the design variables x. Here, the adjoint variable method is used to efficiently compute ∇ψ in two steps. Firstly, a system
of adjoint differential equations

µ̇ =−
(

∂KR
∂y

)T

µ +

(
∂EM
∂y

)T

(ν +ξ )+
(

∂ c̈
∂y

)T

γ− ∂F
∂y

,

M ν̇ =−
(

∂KR
∂z

)T

µ−Ṁν +

(
∂EM

∂z

)T

(ν +ξ )+
(

∂ c̈
∂z

)T

γ,
(2)

have to be set up and solved for the adjoint variables µ and ν . Since the constraint equations are considered at acceleration level
c̈= , the adjoint system is an index-1 differential-algebraic equation. However, it turns out that the auxiliary variables ξ and γ
can be computed in each time step by solving the system of linear equations

[
M CT

C 

][
ξ
γ

]
=

[

−Cν

]
. (3)

A detailed derivation of the adjoint system (2) and (3) is given, for instance, in [1]. With the adjoint variables µ and ν , and the
auxiliary variables ξ and γ , the gradient can finally be computed as

∇ψ =
∫ t1

t0

[
∂F
∂x
−
(

∂EM
∂x

)T

(ν +ξ )−
(

∂ c̈
∂x

)T

γ

]
dt. (4)

For the evaluation of Eq. (4), the derivatives of the system equations with respect to the design variables are required. However,
their computation is not easy because the dependencies are deeply buried in the kinetic and constraint equations via the global
shape functions. Therefore, a procedure is developed, which yields the gradient of SIMP parameterized multibody systems.

4 Optimization Procedure

As shown in Fig. 4, three software tools are combined for the design evaluation and sensitivity analysis in the optimization
procedure. The parameterized finite element model is generated, and modal analysis is performed with ANSYS MECHANICAL.
Then the resulting system matrices and modal analysis results are exported to the Matlab toolbox RED, where the standard input
data are computed that completely describe the flexible body, see [3]. Thereby, the standard input data are augmented by their
design derivatives to allow the exact evaluation of Eq. (4). In this way, all information is available in the multibody toolbox
DYNMANTO to perform the transient system analysis and adjoint sensitivity analysis. From the objective function ψ and its
gradient ∇ψ , an improved design is determined using a gradient-based optimization algorithm such as the Method of Moving
Asymptotes. Then the next iteration starts until a stopping criterion is fulfilled.

ANSYS Mechanical

Define material
models ρ(x),E(x)
Generate mesh
Define boundary
conditions

Assemble and export
system equations K̄(x),M̄(x)

Perform modal
analysis Φ(x),ω(x)

RED (Matlab toolbox)

Coefficient matrices
of body integrals M0,M1, . . .

Coefficient matrices
of body markers M0,M1, . . .

Derivatives of
coefficient matrices ∂M0/∂xi

Transient multibody
analysis y(t,x),z, ż

Adjoint analysis µ,ν
Evaluation of objective
function ψ
Gradient evaluation ∇ψ

DynManto (Matlab toolbox)csv-file

ψ(x), ∇ψ

Figure 3: Process chain for design evaluation and analysis of flexible multibody system
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EXTENDED ABSTRACT

1 Motivation

Optimal control covers a large field of applications, from optimal control of chemical or economic processes up to optimal control
of satellites or robots. Often the general system to control contains many subsystems whose interaction with each other define
the behaviour of the general system. In the case of mechanical multibody systems the choice of coordinates plays a crucial role.
In particular, the choice of coordinates affects the specific form of both the equations of motion and the necessary optimality
conditions. In the case of minimal coordinates the equations of motion take the form of nonlinear ordinary differential equations
(ODEs) and numerical methods to solve related optimal control problems are well established. On the other hand, the choice of
redundant coordinates facilitates the description of general multibody systems. Due to the presence of holonomic constraints the
equations of motion take the form of differential-algebraic equations (DAEs). Numerical methods for optimal control problems
with DAEs as state equations have not yet reached the level of maturity when compared to optimal control problems with ODEs
as state equations. The aim of the present talk is shed further light on the solution of optimal control problems for constrained
mechanical systems.

2 Multibody systems and boundary value problems

x1

x2

x3

x4

x5

x6

m1, l1

m2, l2

Figure 1: Physical pendulum on an slide taken from [1]

A simple but representative example of a multibody system is depicted in Figure 1, whose behaviour can be either described by
using minimal coordinates q = (x1,x6) or redundant coordinates x = (x1,x2,x3,x4,x5,x6) along with the constraints

g1(x) = x2 = 0
g2(x) = x3 = 0

g1(x) = x1 − x4 +
l2
2

sin(x6) = 0

g1(x) = x2 − x5 +
l2
2

cos(x6) = 0

The generalized coordinates (x1,x2, . . . ,x6) are depicted in Figure 1. They are used to describe the kinematics of the two rigid
bodies constituting the planar 2-body system at hand. Livens principle [2] can be used to determine the equations of motion. To
this end, we introduce the augmented action integral

S =
∫ t f

t0
L(·) dt

In the case of minimal coordinates, the augmented Lagrangian L is given by

L(q, q̇,v,pm) = T (q,v)−V(q)− pT
m(v− q̇)
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while using redundant coordinates entails an augmented Lagrangian L of the form

L(x, ẋ,y,v,p) = T (x, ẋ)−V(x)− pT (v− ẋ)− yT g(x)

In both cases T and V stand for the kinetic energy and the potential function, respectively. In Livens principle the relation
between coordinates and velocities is considered as constraint which is enforced by means of Lagrange multipliers, pm and
p, respectively. In the case of redundant coordinates additional Lagrange multipliers arranged in vector y take account of the
holonomic constraints. Enforcing the stationary of the augmented action integral yields the equations of motion along with the
boundary conditions

[pmδq] |t f
t0 = 0 and [pδx] |t f

t0 = 0

respectively. Typically, end-point conditions are assumed to hold for the variations of the coordinates δq and δx, respectively.
However, having in mind optimal control problems, we shall keep the boundary terms to investigate dynamical boundary value
problems (BVP).

The controlled version of the equations of motion can be written in the form

q̇ = ∂H(q,p)
∂p

ṗm = − ∂H(q,p)
∂q + um

}
α̇αα = f(ααα,u)

for the choice of minimal coordinates. Here, H denotes the Hamiltonian and um contains the control inputs conjugate to the two
minimal coordinates. Similarly, for redundant coordinates we have

ẋ = ∂Hy(x,p,y)
∂p

ṗ = − ∂Hy(x,p,y)
∂q + u

}
β̇ββ = f(βββ ,y,u)

000 = g(x)

where Hy is an augmented Hamiltonian and u is a vector with non-zero components associated with the two controls conjugate
to (x1,x6).

We now turn to the the optimal control problem which can be formulated in a similar way as the dynamical problem considered
above. Accordingly, we introduce the functional

SOC =
∫ t f

t0
LOC(·) dt

where LOC is an augmented cost function. In the case of minimal coordinates we have

LOC(ααα ,u,λλλ m) = C(ααα,u)− λλλ T
m(α̇αα − f(ααα,u))

while for redundant coordinates

LOC(βββ ,u,y,λλλ ,ηηη) = C(βββ ,u,y)− λλλ T (β̇ββ − f(βββ ,u,y))− ηηηT G(βββ ,u,y)

Here, C is the cost function to be minimized. Furthermore, λλλ m and (λλλ ,ηηη), respectively, are the adjoint variables. Note that the
form of function G(βββ ,u,y) depends on the (differentiation) index of the underlying state DAEs. We refer to [3],[4] for more
background on optimal control problems with DAEs as state equations.

It is worth noting that the optimal control problem yields a similar type of BVP as the dynamical problem based on Livens princi-
ple considered before. Of course, for both the optimal control problem and the dynamical problem, the solution of the respective
BVP has to be independent of the choice of coordinates. That is, applying minimal coordinates or redundant coordinates should
eventually yield equivalent solutions to the BVP under consideration. However, using redundant coordinates, poses additional
challenges with regard to the proper handling of boundary terms and the optimality conditions. These issues will be further
addressed in the talk.
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EXTENDED ABSTRACT

1 Introduction

Underactuated mechanical systems have more degrees of freedom (DoF) than the number of control inputs. Typical examples
include cranes and low-weight manipulators having flexible elements. The trajectory tracking control of these systems is ad-
dressed in our work. In case of underactuated systems the control force cannot be calculated as a solution of an inverse dynamics
problem and the approaches based on computed torque control also face stability issues [1]. To overcome this problem, the
authors proposed a linear optimal control approach in a previous work [2]. In order to gain higher accuracy of the controller an
iterative nonlinear optimal control solution is presented in this paper.

2 The mechanical model and the control task

A0 x

y

T0

T2

A1 A2

A3

A4

T2

rd(t)

r(q)

er

Figure 1: Mechanical model of a flexible RR manipulator

The mechanical model of an RR manipulator consisting of two flexible elements is shown in Fig. 1. The manipulator has two
actuators in the joints A0 and A2 generating the torques T0 and T2 respectively, while the joints A1 and A3 are passive. The
end-effector, which trajectory is to be prescribed, is located in the point A4. To develop a model-based control algorithm, we
introduce the set of dependent generalised coordinates q(t) and the vector of the input torques u(t). Then the equation of motion
is written in the following classical form

M(q)q̈+ c(q, q̇) = H(q)u. (1)

The goal is to find the control force u(t). Fig. 1 shows the trajectory tracking error er = rd(t)− r(q), which is defined by the
difference of the desired trajectory rd(t) and the realised trajectory r(q). The nonlinear finite horizon cost functional is defined
as

J〈q,u〉=
tf∫

ts

(
eᵀWee+uᵀWuu

)
dt, (2)

with the error vector eᵀ = [eᵀr ėᵀr ]. The matrices We and Wu are the weights of the errors and the control inputs respectively. The
goal of the optimal control problem is to find the inputs u(t) and the optimal motion q(t) of the system that minimises the cost
functional in Eq. (2) while satisfying the equation of motion (1).

3 Iterative solution of the nonlinear optimal control problem

To obtain the solution of the optimization problem, the Euler-Lagrange equations are possible to derive for Eqs. (1)-(2). However,
this approach results in a nonlinear boundary value problem that possesses huge computational demand to solve. Alternatively,
an iteration is introduced in this work that is based on the minimization of the second-order expansion of the cost functional (2)
and leads to a sequence of time-varying finite horizon LQR problems [3].

For the sake of simplicity the state variables xᵀ = [qᵀ q̇ᵀ] and the optimisation variables yᵀ = [xᵀ uᵀ] are defined. We approximate
the cost functional (2) with a second order expansion around the k-th approximated solution yk(t)

J〈yk +∆yk〉 ≈ J〈yk〉+δJ
∣∣
yk
〈∆yk〉+δ 2J

∣∣
yk
〈∆yk〉, (3)
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where δJ
∣∣
yk
〈∆yk〉 is the first variation and δ 2J

∣∣
yk
〈∆yk〉 is the second variation of the cost functional (2). The minimization of

this second-order expansion (3) is equivalent to the solution of the following time-varying LQR problem

J∗〈∆xk,∆uk〉=
tf∫

ts

(
1
2
[
∆xᵀk ∆uᵀ

k

][Q N
Nᵀ R

][
∆xk
∆uk

]
+
[
Sᵀ Tᵀ]

[
∆xk
∆uk

]
+(∆xᵀk E+V)∆ẋk

)
dt (4)

with the linear constraint equation

A∆ẋk +B∆xk +C∆uk +D = 0. (5)

Finally, the iteration is performed as follows: first, an initial value x0, u0 is assigned. Then in every iteration step the time-varying
LQR problem (4)-(5) is solved numerically and the next approximation of the solution is computed by the equations

xk+1 = xk +∆xk, (6)
uk+1 = uk +∆uk. (7)

4 Results

The proposed algorithm was successfully applied to the manipulator shown in Fig. 1 during a linear interpolation task of the
end-effector. The resulting motion is plotted on Fig. 2 by a stroboscopic view. Fig. 3 shows the trajectory tracking error and
Fig. 4 shows the calculated input torques.

0 0.5 1
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Figure 2: Stroboscopic view of the calculated motion
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Figure 3: Trajectory tracking error during the motion
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-2

0
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4

Figure 4: Calculated control input torques

5 Conclusion

The control of underactuated systems is still under investigation nowadays as they possess an internal dynamics which stability is
not guaranteed by regular approaches. Therefore, a nonlinear optimal control approach was presented to manage this problem that
results in a bounded motion of the system. Compared to other optimisation based controllers [4] from the literature, the advantage
of this solution is that it does not require the discretization of the problem before generating an iteration that results in the optimal
solution. Contrarily, the iteration is derived for the continuous-time states and control inputs first. Then the resulting continuous-
time LQR problems are possible to solve with arbitrary numerical methods which results in low computational demand. In
succeeding works the authors intend to exploit the opportunity of this property.
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EXTENDED ABSTRACT

1 Introduction

The control of elastic structures still poses challenges if the degree of freedom (DoF) of the system is increased, or if the time
delay of the feedback control is not negligible . The stability analysis of elastic beams subjected to delayed follower force was
investigated in [1], which was approximated by a lower DoF model since the analytical investigation of the continuum beam
would have been too complex. The howling sound of a microphone-amplifier-loudspeaker system was modeled as longitudinal
self-excited vibration of a beam subjected to delayed force feedback, first with a finite DoF approximation [2], then with a
continuum beam [3]; a similar noise control system was investigated in [4].

The current study investigates the stabilization of an n DoF spring-mass system where the position and velocity of the first block
are sensed and a delayed collocated feedback control force is applied at the same block (see Fig. 1).

Figure 1: Mechanical model of an n DoF spring-mass system subjected to delayed collocated feedback.

2 Mechanical model

The dynamics of the n DoF system can be described by the governing equation

Mẍ(t)+Kx(t) = f(x(t − τ), ẋ(t − τ)) , (1)

where x = col[x1, x2, . . . , xn] is the vector of the displacements of the blocks,

M =




m 0 0 . . . 0

0 m
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . m 0

0 . . . 0 0 m




and K =




k −k 0 . . . 0

−k 2k
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 2k −k

0 . . . 0 −k k




(2)

are the n× n sized mass and stiffness matrices, respectively, while the delayed proportional-derivative (PD) control force takes
the form

f(x(t − τ), ẋ(t − τ)) = [−Kpx1(t − τ)−Kdẋ1(t − τ),0, . . . ,0]T , (3)

where τ is the constant time delay. Introduce the dimensionless delay α = τ
√

k/m, the dimensionless proportional gain
kp = Kpτ2/m, and the dimensionless differential gain kd = Kdτ/m. The characteristic function D(λ ) is the determinant of
the corresponding tridiagonal matrix, which can be derived recursively with the help of the continuant, yielding

D(λ ) =
(

λ 2 +(λkd + kp)e−λ
)n−1

∑
l=0

(
n+ l −1

2l

)
α2(n−l−1)λ 2l +

n−1

∑
l=1

(
n+ l −2

2l −1

)
α2(n−l)λ 2l = 0 (4)

for the characteristic equation. The left hand-side of (4) is a quasi-polynomial with respect to the dimensionless characteristic
exponent λ ; it has got infinitely many roots, finite number of which may be in the right-hand side of the complex plane.
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3 Stability analysis

Static stability loss occurs when a real root crosses the imaginary axis through the origin, which corresponds to possible saddle-
node bifurcation. Substituting λ = 0 into the characteristic equation (4), the static D-curve can be found at kp = 0 (see the left
panel of Fig. 2). The other possibility is that a pair of complex conjugate roots crosses the imaginary axis with nonzero imaginary
part, which corresponds to possible Hopf bifurcation. Let us substitute λ = iω into Eq. (4), where ω is the dimensionless angular
frequency with which the system loses its stability. This yields the dynamic D-curve

kp(ω) =
U2n−1

( ω
2α
)

U2n−2
( ω

2α
)αω cos(ω) , kd(ω) =

U2n−1
( ω

2α
)

U2n−2
( ω

2α
)α sin(ω) , (5)

where U j(y) is the j-th Chebyshev polynomial of the second kind. The dimensionless natural angular frequencies of the uncon-
trolled system can be found at

ωn,l = 2α cos
(

n− l
2n

π
)
, l = 0,1,2, . . . ,n−1 , (6)

from which ωn,0 = 0 corresponds to the translational motion and the others to the oscillating modes.

The left panel of Fig. 2 presents the stability chart of a 3 DoF system in the plane of the control parameters (kp, kd) for α = 0.5;
the circled numbers represent the number of unstable characteristic roots in the disjunct domains. Increasing the dimensionless
angular frequency ω , the dynamic D-curve starts from the origin with ω = ωn,0 = 0; then it has a singularity at ±∞ and goes
through the origin for the second time at ω = ωn,1; after this, it has another singularity at ±∞ and goes trough the origin again
at ω = ωn,2; then it crosses the imaginary axis at ω = π/2 and starts spiraling outwards counterclockwise (see the blue curve in
Fig. 2). The variation of the dimensionless delay α or the DoF of the system alter the dynamic D-curve but it always starts from
the origin, it has n−1 singularities, and it goes through the origin n−1 times when ω = ωn,l with l = 1, . . . ,n−1 .

As it can be observed from the right panel of Fig. 2, the stabilizable domain shrinks and disappears with increasing the dimen-
sionless delay α , but it reappears again and again for larger α values. Moreover, the largest applicable proportional gain can be
found at the first reappearing stable domain.

Figure 2: Stability charts of the 3 DoF system. The left panel presents the stability chart in the parameter plane (kp,kd) for
α = 0.5; the numbers represent the number of unstable characteristic roots. The right panel shows the stability chart in the plane
of the dimensionless delay α and the proportional gain kp for different values of the differential gain kd.

4 Conclusions

The study gives a closed form algebraic expression for the dynamic D-curves of a PD-controlled n DoF spring-mass system. A
typical stability chart is presented, and it is shown that increasing the dimensionless delay, that is, increasing the time delay or
the stiffness of the springs, the stable area disappears but it reappears again and again. Moreover, the largest proportional gain
corresponds to the first reappearance of the stable region.
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EXTENDED ABSTRACT

The use of haptic devices is becoming ubiquitous in simulators for operator training, virtual prototyping, and recreation, and for
teleoperation of real-world robotic devices. The role of the haptic device in these applications is to convey the forces arising
from interactions with a remote or virtual environment to the human operator, a process known as haptic rendering [1]. This is
used, for example, to train machinery operators, astronauts, and medical professionals to perform tasks in their respective fields
in a safe and cost-effective manner, while also improving learning curve and quality of work [2],[3]. Though haptic devices can
be employed to interface with both real and simulated environments, in this work we focus on haptic devices interfacing with
interactive virtual environments such as those in training simulators or video games.

Haptic interfacing is digital in nature, the control signal outputs must be computed based on inputs sampled at discrete time
points, both from the virtual environment with which they are interacting and the haptic device itself. Haptic systems have to
run at high frequencies to avoid instabilities caused by time delay and discretization error. Conversely, interactive simulations
typically run at lower rates to smoothly display graphics while maximizing the available computation time between successive
integration time steps. This discrepancy in frequency requirements can force the haptic system to extrapolate the environment
behaviour when sampling between integration time steps. The most common method to achieve this is known as the zero-order-
hold (ZOH), in which the last known state of the environment is assumed to remain constant until the next integration time step,
regardless of potential changes in the behaviour of the continuous-time representation of the environment between the sampling
points. Such time-history-based methods may yield a prediction of the environment state with no physical basis, resulting in a
loss of information which can induce instabilities, chatter, and reduced rendering fidelity [3].

A clear parallel can be drawn between the notion of a haptic system running at a different frequency than the virtual environment
with which it interfaces and the concept of multi-rate co-simulation, in which a system to be simulated is decomposed into
multiple coupled subsystems which are integrated at different rates to accommodate different frequency requirements between
the two subsystems. We hypothesize that a recently devised reduced-order modelling technique known as reduced interface
modelling (RIM), developed in [4], [5], to improve the performance of multi-rate co-simulation, could help to improve the
performance of haptic devices.

Reduced interface modelling was introduced for improving the performance of multi-rate co-simulations involving mechanical
subsystems interacting with other subsystems of various nature. Consider the case of a single mechanical subsystem interacting
with a single other subsystem with faster dynamics and shorter time scales, i.e., a hydraulic actuator. The method involves
computing a reduced-order model of the mechanical subsystem by parameterizing its dynamics in terms of the local velocities at
the interface between the mechanical subsystem and the other subsystem. This parameterization is obtained by reformulating the
dynamics of the mechanical system such that the dynamics associated with the subspace defined by the local interface velocities
can be factored out. This process is derived in detail in [4] and [5]. The reduced interface model is then transferred to the
simulation unit integrating the other subsystem, which is integrated at a higher rate than the mechanical subsystem on account
of its faster dynamics. The higher rate of integration requires that more than one integration step of the faster subsystem takes
place for each integration step of the mechanical subsystem. The interface model allows the faster simulation unit to make a
dynamics-based prediction of the state of the mechanical subsystem between its (longer) integration steps, rather than relying on
an extrapolation function based on the time history of the state of the mechanical subsystem.

In this work, we implement the RIM technique to improve the performance of haptic simulation. To demonstrate the efficacy of
this approach, we employ a driver-in-the-loop vehicle simulation, in which the driver interacts with a simulated vehicle through
an impedance haptic steering wheel. Steering torque feedback is one of the most important indicators of both vehicle handling
quality and limit performance. The reduction in steering effort as the tires reach maximum cornering potential is one of the
main indicators of impending loss of grip, and the steering-force gradient has an influence on the overall handling quality of the
vehicle [6]. Accordingly, it is imperative that steering torque feedback is accurately rendered by haptic steering wheels for driver
training and human-in-the-loop testing of virtual vehicle prototypes. We use a multibody vehicle model V running in a virtual
environment interfacing with a haptic steering wheel H. The vehicle model consists of five rigid bodies – one for each of the four
wheels and one for the chassis – connected via bilateral constraints simulating revolute and prismatic joints. The interaction of
the wheels with the ground is characterized by empirical tire models relating the vehicle state to the forces and moments acting
on the tires.
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Figure 1: Timeline of events in haptic simulation implemented with RIM.

A single degree-of-freedom (DOF) reduced order interface model I is computed at the beginning of each communication step,
to represent the dynamics of the vehicle from the perspective of the haptic steering wheel. In this case, the local velocity which
defines the interface between the haptic subsystem and vehicle subsystem, and which is used to define the subspace in which the
interface dynamics are expressed, is the angular velocity about the steering axis. Note that the communication step may be equal
to- or longer than the vehicle simulation integration step. At each communication point the reduced model is transferred to the
haptic subsystem, which can integrate the reduced model at a rate higher than that of the full model, owing to the smaller number
of dynamic equations in the reduced model. The haptic controller can then sample the state of the vehicle between integration
steps of the full model using the reduced model which includes information about the dynamics of the vehicle. The timeline of
these events is shown in Fig. 1, where the communication step size is TC , the vehicle simulation integration step size is hV , the
reduced interface model step size is hI , and the haptic controller sampling period is TH. The details of the full vehicle model
and reduced model, and the specifications of the haptic simulation will be addressed in the presentation, along with results of
experiments investigating the stability and fidelity of the haptic rendering.
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EXTENDED ABSTRACT

1 Introduction

A semi-recursive multibody formulation takes the advantages of relative coordinates and leads to numerically efficient approach
to solve dynamics of complex systems. The efficiency of the semi-recursive multibody formulation can be further improved by
employing the rod-removal technique. Efficiency enhancement is due to reduced number of constraint equations and, in part,
reduced number of relative coordinates. In practice, slender rods are often part of multibody systems, for example, in vehicle
suspensions and heavy machinery. Deformation of slender rods is often significant making it necessary to model a slender rod as
a flexible body. In terms of computational efficiency and accuracy, it is important to be able to apply the rod-removal technique
for flexible rods as well.

This paper presents a novel approach for modeling the flexible slender-rods using the framework of the rod-removal technique.
The principle behind this method is to remove the flexible-rods and consider the variable-length constraint equations. When
applying the flexible-rod removal technique, the rods-associated second-derivative-based inertial forces and velocity-dependent
inertial forces and external forces must be calculated and assembled in the whole system. The stiffness equations of the removed
flexible-rods, in turn, are formulated based on the beam finite elements. The finite element equations are combined with the
multibody equations of motion to perform the simulation of rigid-flexible multibody system. A four-bar mechanism with a
flexible middle-link is employed to verify the effectiveness of the presented flexible-rod removal technique. Finally, a rigid-
flexible vehicle model is taken as an example to investigate the effects of flexible-rods towards vehicle dynamics, where different
initial velocities and sprung masses are considered. The results reveal how the flexible-rods affect the vehicle dynamics, and
prove that the effects must be taken into account especially during high-speed, heavy-load, and bumpy road conditions.

Combing the finite element equations of the flexible-rods and the equations of motion of the multibody system, the governing
equations of the rigid-flexible multibody system can be finally expressed as:{

K̄δ q̄=δ P̄(z̈)≈ δ
ˆ̄P

Mz̈i= ¯̄P(z, ż, δ q̄)
. (1)

2 Simulation results

This section introduces a four-bar mechanism to verify the introduced flexible-rod removal technique. Three variations for the
stiffness are considered. They are the original stiffness, the half stiffness, and the one-tenth stiffness. Figures 1 and 2 show the
differences of flexible-rod removal technique with different stiffness in terms of relative coordinates and velocities. Note that the
ADAMS results are regarded as the reference solutions for comparison. Furthermore, for the purpose of validation, the numerical
results of flexible-rod removal technique are also compared with the rigid-rod removal technique and floating frame of reference
formulation.

Figure 1 shows the responses of the relative angles when the rod-flexibility is considered. Figure 2 shows the responses of the
relative angular-velocities when the rod-flexibility is considered. It can be seen that the numerical results close to the reference
solutions. The stiffer the flexible-rod is, the closer the numerical results to the reference solution, as expected. Furthermore, the
floating frame of reference formulation is implemented to verify the effectiveness of the flexible-rod removal technique.
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EXTENDED ABSTRACT

1 Introduction

Computer simulation has been extensively used in the design and analysis of various automation aspects tied to on-road mobility,
see for instance [1]. A similar statement cannot be made for off-road mobility owing to a smaller market and a set of stiff chal-
lenges brought along by the task at hand. However, a predictive simulation platform for off-road mobility analysis of autonomous
agents (AAs) is very desirable since it can accelerate the engineering design cycle, reduce costs, perform more thorough testing,
and produce more performant and safer designs. Simulation has its limitations, first of all related to the issue of simulation-to-
reality transfer, which pertains to the failure of control policies derived in simulation to work well in the real world. Furthermore,
models are difficult to set up and calibrate, the validation process can be tedious and time consuming. Open source simulation
tools that are both predictive and expeditious are not readily available [2]. This contribution addresses this last point. It describes
a simulation environment whose stated purpose is to allow the practitioner to gain insights into the operation of AAs (robots and
autonomous wheeled or tracked vehicles) in off-road conditions with an eye towards: improving mechanical designs of AAs;
and, producing and testing control policies that govern the operations of the AAs. The environment is demonstrated in conjunc-
tion with the design and assessment of a reinforcement learning policy that uses sensor fusion and inter-agent communication to
enable the movement of mixed convoys of human-driven and autonomous vehicles. Policies are learned on rigid terrain and are
subsequently shown to transfer successfully to hard (silt-like) and soft (snow-like) deformable terrains. The enabling simulation
environment is developed from the high fidelity, physics-based simulation engine Chrono. The software stack and the Chrono
simulator are both open source [3]. Relevant movies: [4].

2 Deriving Control Policies Through Simulation

Derived using an accurate simulation framework, control algorithms have been shown to bridge the sim-to-reality gap success-
fully. The use of vehicles with Level 1 and Level 2 autonomy has grown considerably and the automotive industry is making
major strides in the transition to Levels 3 and 4 autonomy. The design of a robust controller that performs adequately in complex
environments has proven difficult when aiming for a generalized policy. As opposed to traditional control approaches, such as
Model Predictive Control (MPC), an emerging approach that has gained momentum in recent years is based on Machine Learning
(ML). In the context of autonomous vehicles (AVs), deep reinforcement learning (DRL) has been very successful, as it displays
the ability to learn and respond in complex scenarios without the need for preprocessed or labeled data.

The purpose of the simulation environment described is twofold. First, it is used to produce the data needed to design a con-
trol policy. Second, it is used for testing purposes. To this end, it exposes the control policy produced in a model-based or
model-free approach to tests that gauge its correctness and robustness. In this contribution, five Chrono modules are employed:
Chrono::Engine, Chrono::Vehicle, PyChrono, SynChrono and Chrono::Sensor. Vehicles are modeled using Chrono::Engine and
Chrono::Vehicle and deployed on deformable terrain within the training/testing environment. Utilizing the Python interface to
the C++ Chrono API called PyChrono and OpenAI Gym’s supporting infrastructure, training is conducted in a GymChrono
learning environment. The GymChrono-generated policy is subsequently deployed for testing in SynChrono, a scalable, cluster-
deployable multi-agent testing infrastructure built on MPI. SynChrono facilitates inter-agent communication and maintains time
and space coherence between agents. A sensor modeling tool, Chrono::Sensor, supplies sensing data that is used to inform agents
during the learning and inference processes.

(a) (b) (c)

Figure 1: Still frames from attached third person camera: (a) rigid terrain; (b) SCM-Hard terrain; (c) SCM-Soft terrain.
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Figure 2: Chrono::Vehicle HMMWV with flexible tires
navigating granular terrain demonstrating vehicle dynam-
ics, flexible bodies, and parallel computing support.

Figure 3: Average deviation in [m] between the leader
and each subsequent follower on each terrain type tested
in the 1L+3F configuration.

3 Technology demonstration

The goal of the demonstration, apart from showcasing the simulation infrastructure, is to enable a vehicle to move as part of a
convoy. To train and subsequently test the derived policy, a four-vehicle convoy is constructed on either rigid or SCM deformable
terrain. Up to three of the convoy vehicles use this policy while driving in a platoon. Thus, the possible scenarios are: three lead
vehicles and one following vehicle (3L+1F), two lead and two followers (2L+2F), and one lead and three followers (1L+3F). The
lead vehicles are programmed to follow a path defined by way-points; for all purposes, these can be considered human driven.
A follower vehicle is autonomous and uses the learned policy to follow the vehicle in front of it. In doing so, it should (i) not
crash into the vehicle ahead of it, and (ii) avoid hitting obstacles in the vicinity of the path. DRL is the chosen technique used to
demonstrate the simulation capabilities; Proximal Policy Optimization (PPO) [5] is one of the most widely used algorithms for
continuous state and action environments and is the algorithm of choice for this demonstration.

In order to perform a statistical analysis of the performance of the platooning policy, we define a set of six performance metrics
that measure the deviations of a follower vehicle from that of the convoy leader and encode both lateral path deviation and
deviations in the vehicle speed at a given location along the leader’s path. These metrics are defined in such a way as to allow
comparisons between the performance of followers at different positions in the convoy, as well as across the three different terrain
types considered here. Statistical results of one of the aforementioned metrics is shown in Figure 3.

4 Conclusion and Future Work

This contribution pertains to a simulation platform designed to facilitate the design and testing of control policies for AAs
operating in off-road conditions. The platform draws on a physics-based simulation engine; has templates for wheeled and
tracked vehicles; enforces space and time coherence for multiple vehicles being run in parallel by different processors; allows
for human-in-the-loop scenarios; provides sensor simulation capabilities; has a bridge to ROS/ROS2; can simulate mobility on
fully resolved, continuum, or SCM representations of the terrain; is open source; and is cluster deployable to support multi-AA
mobility studies. This software framework is used here to design an RL-based control policy that allows AAs to follow in a
convoy formation. The virtual environments used in testing differed in textures and colors from the ones used in the training, thus
demonstrating robustness of the inferred policy that relies on inputs from an RGB camera sensor. Unsurprisingly, the fewer AAs
in the platoon, the tighter the control policy managed to follow a prescribed path. Looking ahead, we plan to augment the sensing
simulation support; improve scalability; and use this infrastructure to derive new control policies for off-road AA mobility.

References

[1] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V., 2017. “CARLA: An open urban driving simulator”. In
Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16.

[2] Choi, H., Crump, C., Duriez, C., Elmquist, A., Hager, G., Han, D., Hearl, F., Hodgins, J., Jain, A., Leve, F., Li, C., Meier, F.,
Negrut, D., Righetti, L., Rodriguez, A., Tan, J., and Trinkle, J., 2021. “On the use of simulation in robotics: Opportunities,
challenges, and suggestions for moving forward”. Proceedings of the National Academy of Sciences, 118(1).

[3] Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J., Taylor, M., Sugiyama, H., and Negrut, D., 2016.
“Chrono: An open source multi-physics dynamics engine”. In High Performance Computing in Science and Engineering –
Lecture Notes in Computer Science, T. Kozubek, ed. Springer, pp. 19–49.

[4] Project Chrono, 2020. Off-road AV simulations. https://uwmadison.box.com/s/
glbpqxpomgyiomt2ydctpe35avrh44vd.

[5] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., 2017. “Proximal policy optimization algorithms”.
CoRR, abs/1707.06347.

251



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Comparing Semi-recursive Multibody Formulations for Hydraulically Driven Mechanisms
Suraj Jaiswal 1, Jarkko Rahikainen 2, Qasim Khadim 1, Jussi Sopanen 1, Aki Mikkola 1

1 Department of Mechanical Engineering,
Lappeenranta University of Technology,

Yliopistonkatu 34, 53850 Lappeenranta, Finland
[suraj.jaiswal, qasim.khadim, jussi.sopanen, aki.mikkola]@lut.fi

2 Mevea Ltd.,
Laserkatu 6, 53850 Lappeenranta, Finland

jarkko.rahikainen@mevea.com

EXTENDED ABSTRACT

1 Introduction

Simulation of complex mechanical systems, such as heavy machinery, can be performed using multibody dynamics. A semi-
recursive method is an often-used computational approach within multibody dynamics. In this approach, closed-loop systems are
modeled by incorporating loop-closure constraints in the dynamics of its open-loop equivalent. In the application of heavy ma-
chinery, the equations of motion are often coupled with models of other physical nature such as hydraulic actuators. The modeling
of hydraulic actuators often leads to a numerically stiff system [1], and consequently, the time integration of coupled multibody
models becomes cumbersome. However, this problem can be alleviated by a proper selection of a multibody formulation.

The objective of this study is to introduce and compare two semi-recursive multibody formulations in the framework of mono-
lithically coupled hydraulic actuators. In the multibody formulations, the loop-closure constraints are incorporated using the
index-3 augmented Lagrangian method with projections and the coordinate partitioning method [2]. Hydraulic actuators are
modeled using the lumped fluid theory [3]. In the study, only a fixed step-size integrator is considered making the introduced
methods suitable for real-time simulation. A case study of a hydraulically actuated quick-return mechanism is illustrated where
the approaches are compared based on the work cycle, energy balance, constraint violation, and numerical efficiency.

2 Multibody system dynamics

In semi-recursive formulations, the equations of motion for an open-loop system with #1 bodies can be written as [1, 2]

M̄Σ¥z = Q̄Σ, (1)

where ¥z ∈ R#1 is the vector of relative joint accelerations, M̄Σ is the mass matrix, and Q̄Σ is the external force vector.

For a closed-loop system, a set of #< loop-closure constraints, � = 0, can be incorporated into the open-loop dynamics in many
ways. In the index-3 augmented Lagrangian method with projections [2], the equations of motion for the closed-loop system can
be written as

M̄Σ¥z+�T
z U�+�T

z λ = Q̄Σ

λ(ℎ+1) = λ(ℎ) +U�(ℎ+1)

}
, (2)

where �z is the Jacobian matrix of �, U is the penalty factor, λ is the vector of iterated Lagrange multipliers, and ℎ is the
iteration step. Here, the velocities and accelerations are corrected using projections after each integration step. For simplicity,
the constraints are assumed to be holonomic and scleronomic in this study.

In the coordinate partitioning method [2], the relative joint velocities are mapped onto a set of independent relative joint velocities
as ¤z =Rz ¤zi, where ¤zi ∈ R# 5 are the independent relative joint velocities with # 5 being the degrees of freedom, and Rz ∈ R#1×# 5

is a velocity transformation matrix. Accordingly, the equations of motion for the closed-loop system can be written as

RT
z M̄ΣRz¥zi = RT

z

(
Q̄Σ−M̄Σ ¤Rz ¤zi

)
⇒ M̄Σ¥zi = Q̄Σ, (3)

where ¥zi ∈ R# 5 are the independent relative joint accelerations, M̄Σ =
(
RT

z M̄ΣRz
)
, and Q̄Σ =

[
RT

z
(
Q̄Σ−M̄Σ ¤Rz ¤zi) ] . This method

assumes that redundant constraints and singular configurations do not exist. Here, the independent relative joint coordinates are
identified using the Gaussian elimination with full pivoting to the Jacobian matrix.

3 Modeling of hydraulic actuators

In this study, the hydraulic pressures in a hydraulic circuit are computed using the lumped fluid theory [3]. In this approach, the
hydraulic circuit is divided into discrete volumes, where the pressures are assumed to be equally distributed. The pressure, ?B ,
within a hydraulic control volume, +B , can be written as

¤?B =
�4B
+B

= 5∑
:=1

&B: , (4)

where ¤?B is the pressure build-up, �4B is the effective bulk modulus, &B: is the incoming and/or outgoing volume flow rates, and
= 5 is the total number of volume flow rates associated to the control volume +B .
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4 Test and results

In this study, the coupling of the semi-recursive multibody methods with the hydraulic actuators are performed in a monolithic
approach. The force vectors in Eqs. (2) and (3) are incremented with the pressure variation equations shown in Eq. (4). The
coupled systems are integrated using an implicit single-step trapezoidal rule. The numerical example is shown in Fig. 1.
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Figure 1: A hydraulically actuated quick-return mechanism

For the presented case study, the energy balance in both approaches showed a good agreement as shown in Fig. 2a, which is
computed using the kinetic energy, potential energy, and actuator work. The augmented Lagrangian approach utilized a full set
of coordinates, whereas identifying the independent coordinates in the coordinate partitioning approach is considered a relative
drawback. The augmented Lagrangian approach can handle redundant constraints and singular configurations, whereas they are
assumed to be non-existent in the coordinate partitioning approach. The augmented Lagrangian approach took 28.47 s of total
integration time and is numerically more efficient than the coordinate partitioning approach (29.03 s) as shown in Fig. 2b. The
poor numerical efficiency of the latter approach is attributed to the iterative solution of the position problem.
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Figure 2: A comparison of energy balance and numerical efficiency with a time-step of 1 ms

5 Conclusion

For the presented case study, the augmented Lagrangian approach had a number of advantages and was numerically more efficient
compared with the coordinate partitioning approach.
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EXTENDED ABSTRACT

1 Introduction

A considerable number of methods and algorithms for the simulation and analysis of Multibody System (MBS) Dynamics have
been proposed since the early developments in this area were first published [1]. The performance of each approach depends
on the characteristics of the problems to which it is applied, and so methods that are effective in the simulation of a certain
type of mechanical system may be inefficient when applied to mechanisms with a different topology or subjected to other kinds
of physical phenomena. Moreover, implementation techniques and the hardware platform used to execute the code, as well as
the interaction between them, have a critical impact on the time elapsed in computations. For these reasons, selecting a MBS
formalism for its application to a particular problem may prove challenging in some cases, particularly when efficiency constraints
are imposed as a requirement.

Benchmark problems represent a useful tool to evaluate both the accuracy and efficiency of MBS codes. Ideally, benchmarks
should be simple enough to enable their exact reproduction by any researcher or team interested in using them. At the same time,
they must be nontrivial problems that provide interesting information about some aspect of the behaviour of the solution method
[2]. In recent years, several initiatives have been put forward by MBS researchers to propose meaningful test problems that can be
generally accepted as benchmarks by the community, e.g., [4, 5]. These examples illustrate the performance of MBS formulations
and implementations when dealing with complex issues such as redundant constraints, singular configurations, flexibility, stiff
problems, and contacts, to mention just a few.

Variable step-size integration methods are frequently used in MBS dynamics applications. In some cases, the step-size control
solution is combined with the MBS formulation used to handle the equations of motion, e.g., [3]. This paper presents a benchmark
problem particularly geared towards such integration methods.

2 Methodology

As benchmark problem, we propose a variation on the well-known slider-crank mechanism, which has already been used as
benchmark in [4], shown in Fig. 1. The addition of an externally applied force f on point Q on the slider may give rise to the
chaotic behaviour of the system under certain circumstances. This is exploited to test the correctness of variable-step solution
approaches. At the same time, it poses a challenge regarding the determination of the reference solution of the problem.

O

P

Q

x

y

θ1 f

g

1 2

3

Figure 1: Slider-crank mechanism used as benchmark problem.

Three simulation cases are considered, as shown in Table 1, which details the lengths (L), masses (m), and moments of inertia
(IG) of the links of the mechanism, as well as the angle of link 1 at time t = 0, θ1,0 and the initial velocity of the slider, ẋQ,0.
It also specifies the expression of the force f applied on Q as a function of time. The system moves under gravity effects, with
g = 9.81 m/s2 acting along the negative y-axis.

Case 1 corresponds to the slider-crank benchmark problem in [4], which goes through a singular configuration when θ1 = π/2,
and is used for comparison purposes. Cases 2 and 3 introduce the externally applied force f = 100sin(πt), which causes
numerical difficulties in the problem solution. Unlike cases 1 and 3, case 2 does not feature any singular configurations.
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Table 1: Simulation cases

Case L1 (m) L2 (m) m1 (kg) m2 (kg) m3 (kg) IG,1 (kgm2) IG,2 (kgm2) θ1,0 (rad) ẋQ,0 (m/s) f (N)

1 1 1 1 1 0 1/12 1/12 π/4 -4 0

2 3 6 1.5 3 0.25 9/8 9 0 0 100sin(πt)

3 1 1 1 1 0 1/12 1/12 π/4 0 100sin(πt)
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EXTENDED ABSTRACT

1 Introduction

Thin-walled elastic structures appear in numerous engineering applications. Flexible flat cables constitute a specific example
of such slender flexible objects which are of particular interest in the development of consumer electronics and computer hard-
ware. Besides their high flexibility with typically elastic behaviour and large width-to-thickness aspect ratio, most cables can be
characterized geometrically as piecewise developable surface strips.

The increasing level of digitalisation of industrial processes in design, functional performance layout and virtual product realisa-
tion requires reliable software tools. These need to provide physically correct models, as well as efficient numerical methods to
compute the behaviour of elastic structures in system operation.

Classical shell theories [1] represent thin objects by means of their centre surface and thereby constitute the state of the art for
the application at hand. This dimensional reduction massively reduces both the number of involved degrees of freedom and
numerical costs. A prominent candidate is the Kirchhoff-Love model which is especially suited to simulate large deformations
of very thin-walled shell structures.

Isometric deformations with identically vanishing membrane energy density preserve the developability of the centre surface.
The structural model introduced in the subsequent sections exploits this property and, thus, its stored energy function consists
only of the shell bending energy. Moreover, developability allows for another dimensional reduction with the computational
benefits mentioned above.

2 Previous Work on and with One-Dimensional Models

Over ninety years ago, Sadowsky [2] continued the idea of dimensional reduction and integrated the bending energy of a devel-
opable, infinitesimally narrow Kirchhoff-Love shell along the width dimension. His approach was pursued by Wunderlich [3],
who explicitly wrote down the small width approximation term. This yields a one-dimensional integral to describe the elastic
bending energy of the whole solid.

Computer graphics designs developable surfaces like paper sheets only through a curve [4]. This is because every developable
surface can be represented as rectifying developable (RD), i.e. as envelope of rectifying planes of a geodesic. Let φφφ and γγγ
denote the parametrisations of surface and generator curve, respectively. Since all developable surfaces are ruled, the surface
parametrisation then reads

φφφ : [0,L]×
[
−w

2
,

w
2

]
, (s,v) 7→ γγγ(s)+ vd(s).

The director vector field d spans the linear rulings in width dimension and, by definition via a Frenet frame, matches the Darboux
vector divided by the Frenet curvature.

Recently, research came up with several one-dimensional models describing the mechanical behaviour of ribbons. Starostin and
van der Heijden [5] utilised the described framework of RDs to compute the equilibrium state of a Möbius band. The book edited
by Fosdick and Fried [6] provides a comprehensive overview of recent work on the subject.

3 Generalised Rectifying Developable Surfaces

In this contribution, we avoid issues associated with vanishing curvature and base our formulation on generalised rectifying
developable surfaces (GRDs) of a relatively parallel framed [7] generator curve. The definition of these GRDs stems from three
properties, which are characteristic for the RD: the surface itself is developable, the base curve is a geodesic within the surface
and the straight rulings following the zero-curvature direction are non-parallel to the curve tangent. A system of nonlinear
geometrical constraints arises and represents isometry in this transformation, which preserves developability according to the
Gaussian theorema egregium

κφφφ
G ≡ 0, κγγγ

g ≡ 0, ‖γ̇γγ×d‖> 0, ‖γ̇γγ‖ ≡ 1, (1)

where κφφφ
G and κγγγ

g denote the Gaussian curvature of φφφ and the geodesic curvature of γγγ within φφφ .

257



We decompose the director vector field along the relatively parallel frame (t,m1,m2) of the centre line d = d0t+d1m1 +d2m2.
This allows us to simplify the arising equations for the GRD (1) and to write them solely in the coefficient functions d0,d1,d2 and
the curvatures of the relatively parallel frame k1,k2. Additionally, the elastic bending energy of a homogeneous isotropic shell
with effective bending stiffness D reduces to a one-dimensional version along the generator curve analogously to [3]

Ξ =
D
2

∫ L

0
(k1d2− k2d1)

2 (d2
0 +1

)2
ds.

4 Equilibrium State by Energy Minimisation

The outcome of our formulation is a nonlinear optimisation program with geometric constraints. In order to find the stable static
equilibrium configuration, we minimise the elastic bending energy functional among feasible solutions satisfying the GRD-
equations (1).

A penalty method addresses these complicated constraints and the resulting penalised objective is minimised by an interior point
optimiser. The degrees of freedom for this optimisation procedure stem from an isogeometric discretisation [8] of the generator
curve and the coefficient functions of the director within the local frame. The isogeometric basis functions yield the required
smoothness and still allow to incorporate geometric boundary conditions directly on specific degrees of freedom. Gradient and
Hessian matrix are computed by algorithmic differentiation [9], which provides code exact derivatives and, thus, avoids numerical
inaccuracies inherent in finite differences.

5 Results

This work elaborates the equivalence between a vanishing membrane energy and the geometrically justified constraints (1).
Subsequently, we discuss the numerical behaviour of our approach at hand of benchmark strips clamped at both ends and, thereby,
illustrate its feasibility. We stress susceptibility to high iteration numbers as a drawback, stability with respect to buckling as for
symmetric boundary conditions (Figure 1, 2), and global convergence in form of large deformations coming from a plane strip
(Figures 3) as advantages of our approach.

Figure 1: Equilibrium configuration
under symmetric boundary conditions.

Figure 2: Example with non-planar
centre curve.

Figure 3: Circular equilibrium config-
uration after large deformation.
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EXTENDED ABSTRACT

In the development and manufacturing process of modern cars, cables and hoses are important system components, see Fig. 1.
In automotive industry, virtual assembly planning and digital validation of system layouts require a fast and physically correct
simulation of the mechanical behavior of cables and hoses. In this work, we present a modelling approach using a finite element
(FE) model [1] for cables which can be used to investigate the effective inelastic constitutive behavior of abstract cables resulting
from structural effects.

Figure 1: Overview of the system of cables and hoses
in a car.
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Figure 2: Experimental result of the pure bending of a
cable specimen given as bending moment MB vs. bend-
ing curvature KB diagram [2].

Cyclic pure bending experiments on a simple cable specimen show that the effective mechanical response of cables is usually
strongly nonlinear and inelastic [2], see Fig. 2. Presumably, material plasticity, damage and structural effects on the level of
individual constituents such as contact and friction between wires occur in such experiments. In real experiments, material and
structural effects can hardly be investigated separately with acceptable experimental effort. Cable models using finite elements
on the level of wires provide an alternative approach to investigate such effects and their interplay. A commercial FEM tool [3]

Figure 3: 3D FE model of the double wire strand with a wire
helix angle of α = 36◦.

Figure 4: 3D FE model of the seven wire strand with a wire
helix angle of α = 36◦.

is used to model the pure bending of a cable. We model the cable as an abstract strand of intertwined wires starting at low model
complexity. The intertwined wires are modelled as stress-free helices [4], one helix resembling one metallic wire. In this first
step, the wires are modelled as materially elastic in order to avoid a superposition of material and structural inelasticity. The first
model we investigate is a double wire strand consisting of two intertwined helices, see Fig. 3. The second simplified cable is
modelled using seven wires with one straight wire in the middle and six helices in the outer layer, see Fig. 4. The radii of the core
wire and the outer wires are not equal and defined such that there is only pairwise contact between the core and the outer wires.
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Figure 5: FE simulation of the pure bending experiment on
a double wire strand, helix angle of α = 36◦

Figure 6: FE simulation of the pure bending experiment on
a seven wire strand, helix angle of α = 36◦

Cables undergo large spatial deformations in applications. Therefore, we model the wires in our abstract cable model using finite
beam elements with quadratic shape functions. The beam element is a one-dimensional line element in space and is defined by
three nodes having six degrees of freedom per node: translations in x, y and z directions and rotations about the x, y and z axes [3].
In addition, contact between wires occurs and must be taken into account. We use the Coulomb friction model [3] provided in
ANSYS to model contact between wires. In order to investigate the influence of friction on the effective mechanical response of
the cable, simulations without and with friction, with varying friction coefficients have been performed. This modelling approach
can furthermore be used to investigate the influence of different lay angles of the helix wires on the effective behaviour of the
abstract cable model. Therefore, the pure bending simulation was performed using models with different wire helix angles as
initial stress-free configuration.
The modelling approach presented in this work allows for versatile and detailed investigations of the effective mechanical re-
sponse of wire strands as abstract cable models. We will show that it is useful for specific simulation experiments on cable-like
structures to get a better understanding of the different material and structural inelastic effects which occur in real experiments
performed on cables. While it is not simply possible to switch friction on and off in real experiments and measure the influence
of friction on the effective behaviour, we can perform such investigations using the presented model.
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EXTENDED ABSTRACT

1 Introduction

Explicit solvers fail for stability reasons in the application to stiff or constrained problems. Classical implicit solvers in system
dynamics like A-stable Runge-Kutta methods or Backward Differentiation Formula (BDF) are tailored to controlled systems
that are designed to return rapidly to some nominal system configuration, e.g., by (very) stiff hydraulic force elements, [1]. In
numerical analysis, this qualitative behaviour is studied by linear test problems such as ẏ = λy with a parameter λ ∈ C−.

In the application to flexible multibody systems, these A- or A(α)-stable solvers tend to introduce an unphysical amount of
numerical dissipation unless the time step size is reduced drastically. For larger time step sizes, the user controlled numerical
damping in Newmark type integrators like the generalized-α method, [2], seems to be more favourable but again the stability
analysis is based on a linear test problem: ẍ+ω2x = 0. In the nonlinear case, the methods are known to converge asymptotically
with second order but there are no guaranteed error bounds for simulations with reasonable finite time step sizes.

Symplectic integrators are known to preserve an approximation of the Hamiltonian on long time intervals. The tools of backward
error analysis are available to study their behaviour in the application to conservative mechanical systems. Favourable properties
have been observed as well in the application to nonlinear multibody system models with material damping and other sources of
dissipation such as friction or control structures.

In the present paper, we compare a symplectic integrator with a more classical integrator that is well approved in industrial
applications and achieves its stability by numerical dissipation. Both integrators are applied to a simple but non-trivial test
problem with material damping. The focus is on rather large time steps (i.e., far beyond the asymptotic limit) since we want to
apply these methods in future research to geometrically exact beam models being discretized on coarse grids in space and time.

2 Test configuration and methods

As a test problem, we present the elastic pendulum, being defined as a flexible rod with one fixed end, subject to a gravitational
field. We consider the planar pendulum in two configurations: the floating frame of reference, [3], and the rotational angles in
two dimensions.
In the first configuration, the generalized coordinates which determine the position of the body are

a) θ ∈ R, the angle between the global fixed frame and the floating frame
b) q f ∈ Rn, the vector of flexible coordinates describing the excitation of the first n eigenmodes

We assume that the origin of the floating frame and the fixed frame coincide and its position is fixed in time. The equations of
motion are

M(q)q̈+D(q)q̇+K(q)q = Qv(q, q̇)+Qg(q) (1)

where the vector q = (θ ,q f ) collects the generalized coordinates, M(q), D(q), K(q) are respectively the mass, the dissipation,
and the stiffness matrix, and Qv(q, q̇), Qg(q) are the vectors of generalized forces.
In the second configuration, we model the elastic pendulum with a series of N rigid masses connected by torsional springs.
The generalized coordinates are the corresponding angles each segment establishes with the vertical axes. The vector ααα ∈ RN

collects the generalized coordinates. In this case the equations of motion are given by a combination of Cartesian coordinates
and rotational angles, and may be reduced to

A(ααα)α̈αα = b(ααα, α̇αα) (2)

by an algorithm with O(N) complexity.
The integration in time is performed with two integrators: the implicit midpoint rule and the generalized-α method.
The former is a symplectic method, [4]. The second one is a numerical integrator with user-controllable numerical dissipation.
The generalized-α method is part of the family of Newmark integrators and the numerical dissipation of the algorithm can be
controlled via the parameter ρ∞ ∈ [0,1]. This method is widely used in simulating the dynamics of flexible bodies because the
high frequencies cancel out. This property allows us to have a better look at the dynamics of the system itself.
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3 Numerical results

The results in Figure 1 are obtained solving the elastic pendulum in the floating frame of reference configuration both with the
implicit midpoint rule and the generalized-α . For the other set up, the results are qualitatively the same presented in the following.
On the left hand side of Figure 1, a comparison between different values of ρ∞ is presented. Decreasing the value of ρ∞ causes an
increase in the numerical dissipation, which can be easily seen in the plot for the conservative system. For the dissipative system,
there are smaller oscillations, and the two solutions are more similar.
In the other two columns of Figure 1, in the conservative system, the implicit midpoint rule conserves almost exactly the total
energy of the system, [4]. On the contrary, the generalized-α shows the dissipation effect that is due to the numerical dissipation.
One can see that for the conservative system a bigger time step influences also the trend in energy dissipation.

Figure 1: Energy trend over time. On the rows: conservative system, dissipative system. On the columns: large time steps
h = 10−2s, small time steps h = 10−3s.

The second row of Figure 1 shows the solution for a dissipative system. Both methods reproduce the energy trend correctly, with
smaller errors in the rightmost plot (h = 10−3). When solving dissipative systems with the generalized-α , increasing the time
step size does not compromise the accuracy as in the conservative systems. Nevertheless, the implicit midpoint rule shows an
overall better behaviour.
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EXTENDED ABSTRACT

In this paper we present a formulation for the investigation of the stability of axially moving beams with attached co-moving
masses having contact with sheaves. Real-world applications of this study concern ropeway systems and conveyor belts. First,
we present the numerical modeling of the system which is based on the Absolute Nodal Coordinate Formulation (ANCF), using
the model of Gerstmayr and Irschik [1], but extended by an additional Eulerian coordinate to represent the axial motion of the
beams [2]. Second, numerical experiments are conducted to investigate the impact of the co-moving discrete masses as well as
of the contact with the sheaves on the dynamic response of the system.

1 Mathematical Formulation

In the developed Arbitrary Lagrangian Eulerian (ALE) formulation the Eulerian part consists of an independent coordinate. The
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Figure 1: (a) Reference, intermediate and deformed configuration. (b) Mass-carrying axially moving beam in contact sheaves.

position of a point PC in the current configuration, as shown in Fig. 1(a), is a function of the local coordinate x̄ in the intermediate
configuration x̄ ∈ [0,L], r = r(x̄, t). The point PR in the reference configuration, see Fig. 1(a), was placed in the point ξ (x̄, t)
and underwent an axial displacement, sE , thus its position in the intermediate configuration, PI , is x̄ = ξ + sE(t). The Eulerian
velocity is the time derivative of the intermediate coordinate, vE(t) = ṡE(t) = ∂ x̄(ξ , t)/∂ t. Therefore, the velocity of the point PC
also depends on axial velocity, vE ,

v(x̄, t) =
d
dt
(r(x̄(ξ , t), t)) = vEr′(x̄, t)+

∂r
∂ t

(x̄, t) , (1)

in which we have used the notation ()′ = ∂
∂ x̄ (). The equations of motion for the axially moving beams [2] are developed based

on extended Lagrange equations given as,

d
dt

∂T
∂ ṗ
− ∂T

∂p
+
∫

S

∂T ′

∂ ṗ
vn ·ndA−

∫

S
T ′

∂vn

∂ ṗ
·ndA = QT , (2)

with the vector of generalized coordinates denoted as p ∈ R9, p = [qT sE ]
T , in which q ∈ R8 is a vector of coordinates of the

ANCF element, q =
[

rT
1 r′T1 rT

2 r′T2
]T

. We interpolate the nodal positions, r1,r2, and slopes r′1 and r′2 using shape functions
of third order polynomial, S, which are explicitly described in [2]. It follows that the time derivatives of p can be written as
ṗ =

[
q̇T ṡE

]
. Moreover, the kinetic energy, T , used in Eq. (2) can be written as,

T =
1
2
(
q̇T Mq̇+2vE q̇T Mxq+ v2

EqT Mxxq
)
, (3)

in which we have made use of the mass matrix, M = m
∫ L

0 ST Sdx̄, and the inertia matrices Mx = m
∫ L

0 ST S′ dx̄ and Mxx =

m
∫ L

0 S′T S′ dx̄. The two integrals of Eq. (2) are computed over the boundary of the beam S where mass flows in or out. The vector
vn is equal to v−w, namely to the velocity of non-material volume minus the velocity of the material volume. Finally, the vector
of generalized forces is represented by Q ∈R9. We reach at two equations of motion, the first of which refers to the ANCF beam
mesh,

Mq̈+ v̇E Mxq+2vE Mxq̇+ v2
E (Bx−Mxx)q = Qq , (4)
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while the second refers to the superimposed Eulerian coordinate sE ,

qT MT
x q̈+ v̇E qT Mxxq+2vE qT Mxxq̇+

1
2

v2
E qT Bxxq = Qv , (5)

in which we have made use of the matrices, B =
[
mST S

]L
0 , Bx =

[
mST S′

]L
0 and Bxx =

[
mS′T S′

]L
0 . For the detailed equa-

tion development we refer the reader to [2] and to the implementation in EXUDYN [3].

The dynamics of the discrete attached masses are introduced through a multibody dynamics approach using sliding joints. Fur-
thermore, we consider a contact-friction condition between the axially moving beams and two dimensional circles which can
represent sheaves in ropeway systems, see Fig. 1. The modeling of contact of the axially moving beams with the sheaves includes
the computation of a normal and frictional force using a penalty-based algorithm according to which the contact normal force is
proportional to the depth of penetration of the beam inside the surface of the sheave. More details about the contact modeling
will be shown in the presentation.

2 Numerical Investigations

We consider the structure of Fig. 1(b) which consists of an axially moving rope, modeled by the above presented beam finite
elements, co-moving discrete masses and sheaves. The beam has a fixed Lagrangian node on the left, but mass is moving along
the beam at velocity vE . In Fig. 2, results obtained for the case of axially moving beams with co-attached moving masses are
shown. The thorough description of the example is given in a previous work of the authors [2]. In order to investigate the effects
of discrete masses we define the mass factor, mDMF, as the ratio of the mass of the discrete masses over the total mass of the
system. For example, if mDMF = 0.2, it follows that 20% of the mass of the system belongs to the discrete masses and 80% to the
beam. We plot the deflection at the one quarter of the length of the beam as a function of the axial velocity and we observe that
after a critical velocity the beam looses its stability through a Hopf bifurcation. In Fig. 2, the bifurcation diagrams of the beams
are given for mDMF = 0.75 and 1 to 3 discrete masses, see Fig. 2(a), resp. 4, 8 and 16 discrete masses, see Fig. 2(b). It appears

(a) (b)

Figure 2: Bifurcation diagram of the beam with a fixed-fixed boundary condition as a function of the flow velocity with 75%
mass attached on discrete masses (mDMF = 0.75) and number of masses between (a) 1 and 3 (nm = 1− 3) and (b) 4, 8 and 16
(nm = 4,8,16).

that the response of the system converges to the continuous case with the full total mass attached to the beam (mDMF = 0) for
increasing number of discrete masses. Having observed that the discrete masses appear to have similar effects on the stability of
the system as continuously distributed mass, we investigate the impact of the contact with sheaves on the overall response of the
system.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement No 860124.

References

[1] J. Gerstmayr and H. Irschik. On the correct representation of bending and axial deformation in the absolute nodal coordi-
nate formulation with an elastic line approach. J. Sound and Vibration, 318(3): 461-487, 2008.

[2] K. Ntarladima, M. Pieber and J. Gerstmayr. Investigation of the stability of axially moving beams with discrete masses.
In Proceedings of ASME 2021 International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, 2021.

[3] J. Gerstmayr, 2021. Exudyn – Flexible Multibody Dynamics Systems with Python and C++. https://github.com/
jgerstmayr/EXUDYN (accessed on March 4, 2021).

264



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

A Nonsmooth Approach to Frictionless Beam-to-Beam Contact
Armin Bosten1,2, Alejandro Cosimo1, Joachim Linn2, Olivier Brüls1

1 Department of Aerospace and Mechanical Engineering
University of Liège

Allée de la Découverte 9, 4000 Liège, Belgium
(a.bosten;a.cosimo;o.bruls)@uliege.be

2 Department of Mathematics for the Digital Factory
Fraunhofer Institute for Industrial Mathematics

Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
joachim.linn@itwm.fraunhofer.de

EXTENDED ABSTRACT

Thin and flexible structures such as cables and beams and their contact interactions play an important role in many engineering
systems [1]. Even if beam models and general contact mechanics have been extensively studied in the literature, publications
on beam-to-beam contact are scarce. Systems involving the contact of beams have many specificities which are generally linked
to the slenderness of their constituents. These influence modeling and numerical methodology choices and include the follow-
ing aspects. First, the multitude of possible contact configurations ie. contact being distributed along portions of finite length
(line-to-line) or over regions short enough to be viewed as pointwise interactions (point-to-point). Some authors apply one single
contact model to handle both situations in a unified manner [2, 3]. Contacts are treated as simple discrete forces, but their number
and location need to be tuned carefully as soon as the contact location cannot be assimilated to a unique point. A sufficient
number of contact points should be chosen to obtain accurate results without over-constraining the system. Other authors argue
for a separate treatment [4], where distributed contact forces are assumed in a certain range of configurations and discrete forces
otherwise. Second, due to the kinematic assumptions of beam models, distributed contact forces are discontinuous in space [5].
Third, the presence of buckling which limits the applicability of quasi-static solvers and thus, in the general case, calls for the
need of dynamic simulation. For contact among beams that have some radial rigidity this means handling contact transitions with
discontinuos velocities in time.

In the quest for robust simulation of complex beam assemblies including contact, each issue must be dealt with one by one. A
non-smooth approach within the Finite Element Method is taken. Non-penetration is enforced via Lagrange multipliers. It differs
from penalty methods in that constraints are verified exactly and the solution is independent of any arbitrary parameter. However,
great care has to be taken in the choice of numerical method, which needs to be able to deal with the potential discontinuity of
velocities in time or distributed contact forces in space. First efforts by the authors concentrated on a quasi-static mortar formula-
tion for frictionless line-to-line beam contact [6]. It proves to be a convenient strategy for the modeling of beam-to-beam contact
along portions of sufficient length. Indeed, over-constraining and the need for a C1 continuous representation of the beam center-
line could be avoided. The method was found to be impractical when the length of the contact region becomes too small. Thus
it was complemented by a point-to-point contact model and extended to the dynamic case. The time-integrator of choice is the
non-smooth generalized-α (NSGA) scheme tailored to flexible multibody systems with vibrations and impacts. First introduced
in [7], it is based on a smooth prediction that excludes impact contributions and two subsequent projection steps that impose
non-penetration constraints first at position and then at velocity level. In this methodology a certain freedom remains in the
definition of the smooth problem, which has an influence on convergence. A fully decoupled version with an improved behaviour
for flexibile systems and non-linear constraints was studied in [8]. Contact information may be included at the prediction stage
by additionally imposing constraints at acceleration level, as done in [9]. In the case of contact among slender structures such as
beams this is necessary to cope with typical tunneling effects.

Finally, all developments are made taking the SE(3) local frame approach [10]. The equations of motion are written on a Lie
group and consistent time and spatial Lie group discretization schemes are a applied. A formulation free of global parametriza-
tions is obtained and locking effects are automatically avoided. Moreover, the contact elements conserve the interesting invariance
properties present in the contact free case. At the symposium, progress made on modeling contact interactions among beams will
be presented and it will be shown that the combination of all the previously mentioned concepts forms an appropriate framework
for handling geometric non-linearities, discontinuities and complex contact configurations exhibited by cable assemblies. Two
indicative examples are shown in figures 1 and 2.
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Figure 1: From top left to righ bottom: The top beam is dropped onto the lower beam, which is clamped on both ends. A
detachment effect may be observed.

Figure 2: Example of three fiber twisting with line-to-line contact.
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EXTENDED ABSTRACT 

1 Introduction 

Tensegrity is the name given to spatial mechanisms stabilized by a tension in their structure [1]. The tensegrity structure consists 

of rigid struts connected by flexible cables. The main advantage of tensegrity is a very good stiffness to weight ratio of the 

structure. Tensegrity is impact resistant and robust against damage of any of the components. The bars and cables of the structure 

are loaded only by axial forces, the bars by pressure and the cables by tension. Large nodes displacements are possible in 

tensegrity. Tensegrity is characterized by the ability to change equilibrium position with small energy demands on the controlling. 

The main disadvantages are the complex description of the internal dynamics, the nonlinear geometric behavior resulting from 

large deformations and the low damping of oscillations. The stiffness of tensegrity is determined by the geometry and prestress. 

However, the choice of geometry has a dominant effect on the overall stiffness of the structure. 

On the basis of the mentioned properties of tensegrity structures, it can be concluded that their high stiffness and low mass 

predestines them for use as replacements for serial spatial robots [2]. However, motion control of tensegrity structures is not 

trivial with respect to their properties [3]. The tensegrity structure can be controlled by a PID controller, by advanced control 

methods such as H-infinity or Computed Torques Control (CTC), or by other methods.  

2 Tensegrity spatial serial structure 

First, there are modelled planar tensegrity structures (Fig. 1) as a replacement for planar serial mechanisms. The stiffness and its 

dependence on the cable connection structure and the number of cables were analyzed. The resulting structure is modelled by 

connecting identical parts (stages). In this way, the arm of any arbitrary length can be created. 

 

Figure 1: Sequence of design of planar manipulators, from left: classic serial robot, external driven structure, cross structure, 

hybrid structure, tensegrity structure. 

When the spatial tensegrity structure is modelled, the individual stages can be formed by tensegrity prisms. Their designation is 

formed by the number of struts (S) and the number of cables (C). 

By connecting such simple tensegrity structures (stages), a structure replacing the spatial serial robot mechanism can be obtained. 

Ideal solids are used to model the struts and the cables are replaced by a force actions dependent on the cable stiffness, its free 

length, prestressing with the inclusion of damping according to equation (1), where kci [N/m.m] is the specific cable stiffness per 

unit cable length and bci [Ns/m.m] is the damping coefficient per unit cable length of the i-th element. 

 

𝐹𝑐𝑖 =
𝑘𝑐𝑖

𝑙𝑐𝑖0
(𝑙𝑐𝑖 − 𝑙𝑐𝑖0) +

𝑏𝑐𝑖

𝑙𝑐𝑖0

𝑑

𝑑𝑡
(𝑙𝑐𝑖 − 𝑙𝑐𝑖0)      (1) 

267



 

Figure 2: Tensegrity manipulator. On the left is the S3C6 stage of the manipulator and two levels connected together. On the 

right there are two tensegrity structures composed of six S3C6 levels (without diagonal cables and with diagonal cables). 

3 Results of simulations 

The aim is to analyze the control methods of tensegrity based spatial structures and the influence of the positioning capability 

based on different forms of tensegrity structure. The number and the method of connection of cables in the tensegrity structure 

(Fig. 2) is significant, as well as its internal prestress. It has a great influence on the positioning accuracy of the control [4]. The 

movement of the tensegrity structure along the specified spiral trajectory is realized by a PID controller (Fig. 3). The motion of 

a given structure and the quality of the control will be reflected in the resulting error. 

 

Figure 3: Desired spiral trajectory of the center of the platform of the tensegrity structure (left) and the position error (right). 

Eigenfrequencies of tensegrity structure are also analyzed. Furthermore, the possibility of damping in the cables and the effect 

of the damping coefficient on the steady motion are analyzed as well. 
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EXTENDED ABSTRACT

1 Introduction

While modern contact mechanics in 3D continuum largely focus on the mortar method [1, 2], beam-to-beam contact development
somehow lags behind these developments, with some exceptions such as ABC method [3]. In order to fill this gap, a new
frictionless mortar method for beam-to-beam contact has been developed. It is based on a line-to-line type formulation with
distributed contact force represented by a Lagrange multiplier field.

2 Beam-to-beam contact

A beam-to-beam contact describes interaction between two bodies that can be represented by beam theory. In a more general
case, these two bodies can be viewed as segments of one or more beams and in this way refer to both the contact between the
two beams as well as self-contact in either of them. In what follows, these two segments will be simply referred to as beam (1)
and beam (2). Individual beam geometry is described by its centreline x(i)

(
s(i)
)

in a deformed configuration. The contact is
enforced by the following contact conditions

non-penetration condition g ≥ 0,
positive pressure condition FN ≤ 0,
zero-work condition FNg = 0,

where g denotes the gap and FN the contact force. These conditions apply to each individual point on the beam surface. For the
contact-geometry definition the shear deformation is neglected and the cross-section is assumed to remain perpendicular to the
centreline. This assumption, together with the assumption of circular cross-section, simplifies the gap function as it now depends
solely on the position of the two centrelines. It is justified by the fact that the shear deformation only marginally changes the
distance between the two beams.

3 Mortar method

The contribution of frictionless contact to the total energy of the system can be defined by the contact potential [4]

ΠN =
∫

Γc

λgds ≈
∫

Γ(1)

λgds(1), (1)

where λ and g are Lagrange multiplier and gap respectively. The true integration domain of the contact potential is the actual
contact segment Γc where the two surfaces intersect. It is approximated by the centreline of one beam Γ(1), making it the non-
mortar side of the contact. Non-mortar side is also the carrier of the Lagrange multiplier field λ representing the distributed
contact force which is equal and opposite on the two sides of the contact and is therefore not necessary to compute twice.

Figure 1: Geometry of mortar contact Figure 2: Mortar element

The gap function is defined as the shortest path from the mortar-side centreline to some point on the centreline on the non-mortar
side (see Figure 1) reduced by the beams thickness

g = vTn(2)−ρ(1)−ρ(2), (2)

269



where constants ρ(1) and ρ(2) are cross-section radii of the respected beams. Following the virtual work principle, the variation
of discrete contact potential (1) is

δΠe
N =

L(1)∫

0

λ
(

δx(1)−δx(2)
)
·n(2) ds(1)+

L(1)∫

0

δλgds(1), (3)

where the first term is associated with the virtual contact work and the second is the weak form of the non-penetration condition.
A standard finite-element procedure follows with the linearisation of equation (3) , insertion of the Lagrange polynomial interpo-
lation of displacement and Lagrange multiplier field and assembly of the global system of equations. Finite-element discretization
defining a mortar element is shown on Figure 2. Gauss quadrature is used for numerical integration. Not all non-mortar side
element integration points need to be paired with a same mortar element, but the established pairs should remain constant during
the balance search within the Newton-Raphson algorithm to preserve a second-order convergence rate.

4 Discussion

A series of numerical experiments has been conducted on three different test cases, each targeting some aspects of frictionless
beam-to-beam contact. The patch test has been performed to check the non-penetration condition and establish validity of the
method. In contrast to penalty methods, the Lagrange multiplier approach guarantees exact solution with zero gap within the
machine numerical precision. Due to the weak fulfilment of the non-penetration condition, sliding over elements does not lead
to any loss of convergence. Example of two twisting cantilever beams forming a helix has served to test the distributed contact
force. The resulting contact force is C0 continuous and converges with the increased number of elements. The last experiment is
an example of self contact (Figures 3 and 4). A ring clamped on one end has been twisted in the shape of number 8. Self contact
has been detected and shown to cause no instability in the solution.

Surprisingly, the method has proved to be rather independent of the number of integration points. Only a few of them have been
sufficient for all test cases (usually double the number of nodes on an element). Although not as numerically efficient as some
existing formulations, i.e. [3], it can address a wide range of different applications free from the choice of the penalty parameter.
These tests prove that the mortar method is not only an effective formulation for beam-to-beam contact but also provides a lot of
space for improvements and future research.

Figure 3: Twisting of a ring Figure 4: Final deformed shape
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EXTENDED ABSTRACT

Electric cables, as those shown in Fig. 1a, are complex objects due to their multi-material composition and their geometric
properties. Consequently, different internal interaction effects occur and lead to an observed effective inelastic deformation
behaviour of such cables. Cyclic bending experiments [1, 2] show open hysteresis loops with noticeable difference between the
first load cycle and the following ones, as shown in Fig. 1c. In the framework of continuum mechanics, such deformation effects
are modelled using suitable constitutive equations for specific material behaviour. In the presented work, we aim at modelling
the observed behaviour on an abstract level using hysteresis operators. The choice of this mathematical framework has been
motivated by the ability of such operators to describe hysteresis phenomena with enough generality and without the need of a
priori assumptions on the material behaviour.

(a)

(b)
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(c)

Figure 1: (a) Cross sections of different electric cables. (b) Pure bending test rig. (c) Bending moment vs. bending curvature
diagram measured in a pure bending experiment.

As shown in [3, 4], hysteresis operators are a well-studied topic with a variety of applications, mainly hysteresis effects arising
from electric and magnetic phenomena. The Preisach operator P plays a major role in modelling the input-output relation in
hysteresis behaviours and can be expressed as a superposition of relay operators Rs−r,s+r multiplied by a suitable kernel function
ω(r,s), which is assumed to vanish for large values of |s| and r,

w(t) = P[v](t) =

∫ +∞

0

∫ +∞

−∞
ω(r,s)Rs−r,s+r[v](t)dsdr. (1)

In particular,

• v(t) and w(t) are respectively the input and the output function, the plot of the input func-
tion used in this case is shown in Fig. 3a,

• s and r are the coordinates of the Preisach plane,

• Rs−r,s+r[v(t)] ∈ {±1}, equals +1 or −1 if v(t) crosses the threshold value s+r from below
or s−r from above, respectively, and is interpreted as a switch operator between the values
−1 and +1, with switching interval of width 2r and centered in s. In Fig. 2, the diagram
of the relay operator for s = 0 and r = 0.5 is shown.

-1 0 1

-1

0

1

Figure 2

The definition of the Preisach plane occurs naturally from the definition of the Preisach operator and can be determined recur-
sively. This definition entails that the interface between the two regions that form a partition of the Preisach plane automatically
carries the total memory information present in the system at time t (Fig 3b). It should be noted that Preisach hysteresis operators
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provide a model for causal response (see [4]), such that the output value w(t) at time t depends only on inputs v(t ′) at past times
t ′ ≤ t. Thus, hysteresis loops can be computed by integrating a suitable kernel function over a domain included in the Preisach
plane.

Here, data collected from different bending experiments [1] are utilised for a first approach. A mathematical formulation of the
problem is introduced, and a first attempt is made to mathematically determine the hysteresis behaviour that describes the relation
between input and output. In Fig. 1c the experimental results for a pure bending experiment on a simple cable are shown. Fig.
3c shows the simulation result obtained from the kernel function ω(r,s) that has been determined by a fit to the data.
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Figure 3: (a) Curvature vs. time. (b) Domain (black rectangle) included in the Preisach plane with two examples of interface
lines between the sub-regions of such domain. (c) Estimated plot of bending moment vs. curvature obtained by means of the
hysteresis operator.

In this contribution, starting from the input scalar function (e.g. bending curvature), the Preisach plane is recursively defined and
the identification of a suitable kernel function is achieved by means of a least squares method, in a way that the integration of
such kernel function over the Preisach plane results in the output (e.g. bending moment) measured during the experiments [5, 6].
Moreover, observations and comments regarding the kernel functions are made comparing different kernel functions derived from
different experiments.
Finally, an outlook on the possibility of including the presented method into a Cosserat rod model [7] is presented, with the idea
of utilizing this approach to formulate a versatile constitutive model, aiming at its application in the simulation of deformation of
cables.
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EXTENDED ABSTRACT

1 Introduction

Composite materials are widely used in engineering applications. However, their constitutive properties are not easy to define
due to the complex behaviour of the mixed materials. In order to analyse composite beam cross-sections, several techniques are
presented in the literature. In particular, computational approaches [1], such as finite element methods, are popular for analyzing
such problems, since even the simple multi-material cross-sectional study cases are complex to solve with theoterical procedures.
Nevertheless, an analytical determination of effective stiffness properties of composite beam cross-sections, based on the model
of directed curves in linear theory of rods, is shown in [2,3]. This work focuses on the homogenization of the mechanical
properties of circular multi-layered cross-sections obtained through [2] and the comparison of results in terms of displacements
and rotations of beams studied in the linear and the nonlinear case.

2 Characterisation of composite circular cross-sections

Multi-layered beams are composite structures and they can be composed of numerous layers of different materials. In [2], two-
layers piecewise homogeneous sandwich beams made of isotropic materials, shown in Figure 1, are studied. The cross-section is
divided in a core and a face, characterized by different material parameters and welded together in such a way that no separation
can accur during deformation.

O

e2

e1
2R12R2

(ρf , Ef , νf )

(ρc, Ec, νc)

Figure 1: Circular sandwich cross-section

The authors investigate the mechanical behaviour of composite elastic beams using the theory of directed curves, a Cosserat-
type model for thin rods. In other words, rods are modeled as deformable curves defined by a position vector and a triad of
directors attached to every point along the curve, and the triad describes the rotations of cross-sections during deformation as
previously done in [3]. They derive the constitutive equations for elastic composite rods in the linear case and obtain the effective
extensional, bending, shear and torsion stiffness properties of thin rods by comparing the solutions of some extension, bending
and torsion problems for directed curves with the corresponding results obtained for three-dimensional rods. In the particular
case of isotropic materials for circular sandwich cross-sections, the effective stiffness properties are expressed as a combination
of material parameters and geometry of layers [2]. These values are used as inputs in the stiffness matrices in (1) for the
geometrically exact beam model.

3 Homogenization of the constitutive properties of a three-dimensional Cosserat beam model

We consider a static three-dimensional Cosserat beam model (adapted from [5] to the static case) of homogeneous material,
and assume that the beam’s planar cross-section is constant along the beam and remains rigid when the beam deforms. The
equilibrium equations are derived from the Lagrangian function (consisting of the deformation energy only) by applying the
Hamilton principle to the action integral [4]. The matrices of elasticity coefficients of the beam are defined as follow:

CΓ := Diag(GA GA EA) and CK := Diag(EI EI GJ) . (1)

where A is the cross-sectional area of the rod, I is the principal moment of inertia of the circular cross-section, J = 2I is the polar
moment of inertia, E is Young’s modulus, G = E/[2(1+ν)] is the shear modulus, and ν is Poisson’s ratio.
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4 Comparison of the homogenized effective stiffnesses in the linear and nonlinear case

Maximum deflection and rotation are evaluated from the analytical solutions for benchmark problems for directed curves, as in
[2-3]. For our study, those results are compared to the numerical ones obtained from the nonlinear Cosserat rod model using
by homogenized effective stiffness coefficients. The comparison shows that for small loads results in terms of deflections and
rotations are the same and, while increasing the load magnitude, results in the linear and nonlinear frames diverge.

5 Conclusion and discussion

This work represents a comparison of the linear model from [2] and a nonlinear Cosserat beam model for the case of multi-
material layered cross-sections. In future, this process will be useful to study more complex inhomogeneous cross-section models
of beams in cases relevant for medical device operation, i.e. endoscopes. Indeed, the characterisation of effective properties for
inhomogeneous cross-sections will be validated through an experimental campaign in collaboration with Fraunhofer ITWM
(Germany). For this purpose, MeSOMICS (Measurement System for the Optically Monitored Identification of Cable Stiffness)
will be used to investigate effective stiffness parameters of thin rod samples with multi-layered cross-section, by carring out
bending, torsion and elongation experiments.
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EXTENDED ABSTRACT

1 Introduction

In the non-linear stability analysis of structures undergoing complex deformation, the precise prediction of the behaviour of
the structure in the post-buckling regime poses a serious challenge for the numerical procedure. This problem has typically
been studied by considering the geometrical non-linearities within the static equilibrium equations. Near the critical points
of the equilibrium path, the load-deflection characteristics are dynamic in nature. This often results in requirements of short
time intervals to simulate the quasi-static load increment close to the critical point. Further, at the critical points, the structures
are exhibiting also snap-through and snap-back behaviours, which requires time-dependent load relaxation. In addition, the
incremental time step, i.e., adaptive step size can be used in the path-following constraint equation by replacing the arc-length
parameter by time. For this purpose, we have extended the velocity based finite-element formulation of spatial beams with
the modified arc-length path following control additionally equipped with adaptive step size. The crucial idea of the proposed
formulation is to employ velocities in fixed frame description and angular velocities in moving frame description as the primary
unknowns. Such model therefore allows standard additive interpolation to be fully consistent with the configuration space, direct
application of path-following constraint in the tangent space and elegant extension of path-following controls to rotational degrees
of freedom.

2 Methodology

The present beam formulation is based on 2nd order approximation of governing equations in time with the implicit midpoint
time integration. Among various possibilities, the quaternion algebra is employed for the parametrization of rotations, however,
the primary unknowns of the iterative scheme are chosen to be velocities and angular velocities. It was already shown that
such approach is computationally advantageous when choosing standard additive-type interpolation functions for the primary
unknowns when expressed in suitable reference frames. Standard Galerkin-type finite-element method is employed for the
spatial discretization, see [1] for further details. The final discrete governing equations of a three-dimensional beam are given by:

∫ L

0

[
ρA
(

v[n+1]− v[n]
)

Pi +hnP′i −hñ[n+1/2]Pi

]
dx−hδi f = 0 (1)

∫ L

0

[
Jρ

(
Ω[n+1]−Ω[n]

)
Pi +hΩ× Jρ ΩPi−hK[n+1/2]×MPi +hMP′i −hPi

(
q̂∗[n+1/2] ◦ r′[n+1/2] ◦ q̂[n+1/2]

)
×N−h

(
q̂∗[n+1/2] ◦ m̃[n+1/2] ◦ q̂[n+1/2]

)
Pi

]
dx−hδiH = 0.

(2)

The superscript denotes the time at which a particular quantity is evaluated, h= tn+1−tn is the time step, and time tn+1/2 = tn+h/2
denotes the mid-time between tn and tn+1. The system of equations is clearly non-linear and is therefore solved in an iterative
manner using Newton-Raphson method. For that purpose, we express all the quantities of the beam with velocities and angular
velocities at the middle of the time step:

v[n+1/2] = v =
1
2

(
v[n]+ v[n+1]

)
, Ω[n+1/2] = Ω =

1
2

(
Ω[n]+Ω[n+1]

)
. (3)

E. g., for the configuration variables, we assume

r[n+1/2] = r[n]+
h
2

v, q̂[n+1/2] = q̂[n] ◦ exp
(

h
4

Ω
)
. (4)

The objective in the stability analysis of structures is to obtain the equilibrium states at various load levels. The equilibrium
states trace the load-displacement responses where the applied load is a function of a unique load parameter. Thus, in equilibrium
equations (1)–(2) discrete loads are expressed in the following form

[
δi f
δiH

]
= λ p, (5)
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where p is a constant vector of external reference point forces and moments and λ = 1
2

(
λ [n]+λ [n+1]

)
is the load factor at the

mid time. The time dependent load-displacement response of a structure can now be represented using the tangent vector,
[
ṙ, λ̇
]T

while the additional equation relating the unknowns is given by the following generalized arc-length control equation

ξ
(

ṙ, λ̇
)
= ṙTWṙ+ λ̇ 2 pTH p−1 = 0. (6)

However, from the perspective of velocity-based beam formulation the path-control equation can be conveniently expressed as

h2
[

v
Ω

]T

W
[

v
Ω

]
+
(

λ [n+1]−λ [n]
)2

pTHp=h2, (7)

where W and H are arbitrary symmetrical scaling matrices representing various arc-length schemes. The above quadratic discrete
path-control equation is added to the governing equations and solved simultaneously with them.

3 Numerical example

We demonstrate the applicability of the method on a right angle cantilever frame subjected to an in-plane loading as presented in
[3]. The geometrical and material properties are: E = 71240 MPa, ν = 0.31, length of each arm L = 240 mm. Width of the cross
section b = 30 mm and slenderness ratio of 1/50 are taken. The in-plane load of Px = 1.2 N is applied at the tip. The results are
obtained using a mesh of 25 elements of order 5. Due to the high slenderness of the cross section, the frame buckles laterally,
which can be observed in the figure.

Figure 1: Lateral buckling of a right angle cantilever frame (a), the load-displacement curve (b), and the deformed shapes (c).

Acknowledgments

This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 860124. The support is gratefully acknowledged.

References

[1] E. Zupan and D. Zupan, "On conservation of energy and kinematic compatibility in dynamics of nonlinear velocity-based
three-dimensional beams", Nonlinear Dynamics, vol. 95, no. 2, pp. 1379-1394, 2018.

[2] E. Zupan and D. Zupan, "Third-order Time Integration Scheme for Structural Dynamics", in The Eleventh International
Conference on Advanced Engineering Computing and Applications in Sciences, Barcelona, Spain, 2017, pp. 56-62.

[3] J. Simo and L. Vu-Quoc, "A three-dimensional finite-strain rod model. part II: Computational aspects", Computer Meth-
ods in Applied Mechanics and Engineering, vol. 58, no. 1, pp. 79-116, 1986.

276



 

 

ECCOMAS Thematic Conference on Multibody Dynamics 

December 12 – 15, 2021, Budapest, Hungary 

Modeling The Rotary Inertia of Sheaves with The Arbitrary Lagrangian-Eulerian Modal Approach 

José L. Escalona, Narges Mohammadi  

 
Dept. of Mech. and Manufacturing Eng. 

University of Seville 

Camino de los Descubrimientos s/n, 

41092, Sevilla, Spain 

 [escalona] [narges] @us.es 

 

EXTENDED ABSTRACT 

1    Introduction 

The Arbitrary Lagrangian-Eulerian Modal (ALEM) approach is a discretization method recently developed [1, 2] for the dynamic 

analysis of reeving systems. The main properties of this method are: 

▪ It is a systematic method that can be used to automatically build the equation of motion of reeving systems 

▪ It models the wire rope flexibility in the axial and transverse directions and the twist 

▪ Thanks to the ALE approach, it results in computationally efficient modeling equations that requires a small number 

of finite elements (see Fig. 1 (a) and (b)) 

▪ The resulting equations of motion (EOM) include a minimum set of constraint equations due to the wire rope to rigid 

body interactions 

In this work, an improvement in the formulation is described that reduces to zero this set of constraint equations while accounting 

for the rotary inertia of the deviation sheaves.  

                                      

(a)                                 (b)                                                (c)                                                        (d)         

Figure 1: ALEM formulation: (a) Reeving system modeled with Lagrangian FEM and (b) modeled with ALE-FEM, (c) ALEM 

element in arbitrary position in space and (d) in reference straight position 

2    Modeling rope to sheave interaction 

Figure 2 shows the ALEM elements j and k whose ends 2 and 1, respectively, are tangent to a sheave that is rigidly connected to 

the rigid body i. In the ALEM formulation, the rope to sheave contact is not modeled so far. It is not needed to analyze the overall 

dynamics of the reeving system. The connectivity condition 2 1 0j ks s− = excludes the rope segment in contact with the sheave 

of the system model. The element to sheave interaction was modeled [1, 2] using the following kinematic constraints: 

( )

( )

( ) ( )( ) ( )

2 2

1 1

2 1 0

i i i

j t

i i i

k t

j j k k

ax ax s mF F R M t

− + =

− + =

− − =

r R A u 0

r R A u 0

q q

         (1) 

where the two first equations force the end nodes to be located at the pre-defined tangent points of the sheave.  The last equation 

is a time-dependent constraint that guarantee that the torque due to the axial load different equals the externally applied force to 

the sheave. The two first equations are linear in terms of the ALEM nodal coordinates (they can be eliminated of the EOM) and 

the last equation is a non-linear constraint that must be accounted for in the EOM using, for example, the Lagrange multiplier 

technique. Clearly, this last equation neglects the effect of the rotary inertia of the sheave, that uses to be very small in comparison 

with other inertia effects in reeving systems.  In the following section, an alternative approach that avoids this non-linear 

constraint is proposed.  

3    Rope to sheave interaction considering rotary inertia of the sheave 

The alternative formulation for the rope to sheave interaction requires to add as a generalized coordinate of the reeving system 
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the angle αs rotated by the sheave. That way, the third constraint in Eq. (1) can be substituted with the following no slip 

condition: 

2 20( ) 0j j s ss s R− − =            (2) 

This is a linear constraint that can be accounted for in the EOM eliminating the nodal coordinate sj2 of the EOM. That way, the 

rope total inertia and the sheave rotary inertia are considered while the EOM are simplified at the expense of increasing the 

size of the system with 1 dof per sheave.   

 

Figure 2: ALEM elements tangent to a sheave 

4    Example 

Figure 3 (a) shows the model of an elevator with elastically supported motor and a compensating rope under the cabin and 

counterweight. The deviation sheave at the bottom has been modeled with and without considering the rotary inertia. The 

deviation sheave is loaded with a spring to have a static pre-tension of 1 kN. Figures 2 (b) and (c) show the tension on the drive 

and compensation ropes, respectively, during the elevator ride. As it can be observed, the inertia of the deviation sheave has a 

small effect of the tension of the drive sheaves. In the deviation sheaves, when rotary inertia is not considered, the tension on 

ropes c and d is equal, as imposed with the third equation in Eq. (1). When rotary inertia is considered, tension is different in 

both segments. However, the difference is not only due to the rotary inertia. This is clear because at the initial and final instants, 

when the system is not moving, tensions are different. The reason for this tension difference is that the ALEM method considers 

linear interpolation of the axial deformation of the ropes. Thus, the tension is assumed to be constant. However, due to the inertia 

and gravity forces of the ropes, the tension is actually space dependent. These results show that it would be desirable to develop 

new ALEM element that consider axial strain that vary along the element. This is the next development of this formulation.  

             

(a)                                                    (b)                                                                 (c)              

Figure 3: (a) Elevator model, (b) tension on drive ropes and (c) tension on compensating ropes. In the plots, solid lines do not 

consider sheave rotary inertia and dashed lines do consider it  
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EXTENDED ABSTRACT

1 Introduction

Conventional robotic manipulators are designed mainly as (quite) rigid elements coupled by suitable kinematical joints that are
driven by active drives. The most common robots have the well known serial structure. They have good ratio between the
built-up space and the effective workspace [1]. Their main drawbacks are typically the low effective stiffness, low damping and
in particular, the unfavorable ratio between stiffness and mass. On the other hand there exist structures with more favourable
properties for particular applications. Such structures could be various tensegrity systems, which are defined as a structure whose
integrity is maintained by tension in its design elements [2]. They are commonly composed of struts (rigid elements, bars, rods)
and cables (fibers, strings, etc.). It is an interesting idea to use these tensegrity units instead of common rigid elements and study
their effects on the manipulators’ performance. The aim of this paper is to introduce the methodology for the optimization of
tensegrity structures which are suitable for the further usage in the design of various robotic manipulators based on multibody
system dynamics.
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Figure 1: Initial (left) and deformed (right) configuration of a basic planar tensegrity (struts are denoted by red colour while
cables are denoted by blue colour)

2 Methodology

Since the main motivation is to replace typical rigid and massive elements of serial manipulators by suitable tensegrity structures
(see Figure 1 for a typical planar example of class 1 tensegrity unit), the elementary step of the design is to find the basic tensegrity
with optimal properties with respect to planned manipulator working conditions. It means that it is necessary to

• determine the overall structure of the manipulator (i.e. the number of tensegrity units and joints between them),

• design basic dimensions of the tensegrity units considering the working space,

• find the proper topology of the tensegrity unit and determine the prestress of its cables,

• optimize other possible parameters (stiffness, masses etc.) in order to obtain prescribed properties.

This approach was implemented in an in-house software in MATLAB system and it allows to automatically find suitable tenseg-
rity structural units. One of the most important methods used during the process is the form finding by the adaptive force density
method [3], which is basically a numerical method proposed to achieve the required rank deficiency of the equilibrium matrix
characterizing a tensegrity. The parameters of tensegrities are optimized also with respect to possible load cases in order to obtain
the structure which can be loaded in different directions based on a considered robot operation.

Afer the run of the introduced procedure, it is necessary to verify and possibly improve the dynamic behaviour using a complex
multibody model of the tensegrity unit. The tool for the automatic generation of the SIMSCAPE multibody models using the
previously found topology and other parameters was also created (see Figure 2 for the example of a generated basic tensegrity
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model). These models can be easily combined together with standard kinematical joints and chosen driving elements and complex
dynamics of the proposed tensegrity manipulator can be investigated. The methodology was developed for both, planar and spatial
structures. Design, control and simulation results of the motion of a serial tensegrity structure without special joints were shown
by the authors of [4]. It is planned to incorporate also the active tensegrity structures with embedded actuators.

Figure 2: Realization of the model of a basic tensegrity unit in SIMSCAPE

3 Results and conclusions

This paper deals with the methodology for the optimized tensegrity structures design for the development of robotic manipulators.
The in-house software for the automatic solution of this task was created based on the proposed methodology. The replacement of
classical serial robot by light active tensegrity mechanism can significantly improve its stiffness/mass ratio and bring completely
new possibilities of controllability and observability by internal actuators and sensors. The great benefit of active tensegrities
is that we can reach a high level of force control within the structure. The low authority control (vibration suppression) can
be combined with the high authority motion control and force control. The possibility of temporary relaxation of potentially
colliding tendons can enlarge the reachable workspace.
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EXTENDED ABSTRACT

1 Motivation

In today’s automotive industry, an early stage digital validation has become the standard procedure in product development. This
includes the validation of flexible parts such as cables and hoses. The variety of electronics used in modern vehicles has made the
cable system one of the central parts when it comes to safety and function of the product. So far the simulation based validation
of cables and hoses using the IPS software family has focused on the basic functionality of the vehicles, namely the proper design
of moving parts (such as doors, lids or the suspension linkage and steering) as well as the validation of production processes
(mountability by hand and robotic applications). With the relatively new Durabilty and Dynamics module (introduced in 2018)
we extended the field of application for our software by simulations of products in operation. This change of objective is followed
by the need for different simulation approaches.

2 Cable model

For slow motions like opening or closing doors and lids a quasistatic approach yields the best trade-of between accuracy and
speed. In this approach we utilize a geometrically non-linear Cosserat rod model and combine it with a linear material model
[1]. This approach leads to a minimization problem for the potential energy, which is (among others) determined by the elastic
energy:

V =
∫ L

0
(Γ1 Γ2 Γ3)




GA1
GA2

EA






Γ1
Γ2
Γ3


+(K1 K2 K3)




EI1
EI2

GJT






K1
K2
K3


ds (1)

Here, the material strain and curvature measures are denoted as ΓΓΓ and K, respectively, and the effective stiffness parameters of
the cables need to be determined for practical applications in cable simulation:

[GA1], [GA2], [EA], [EI1], [EI2] and [GJT ] (2)

These parameters are obtained using the MeSOMICS machine, a highly automated measurement setup that has been developed
at ITWM [2].
The kinematics of suspension linkage will (among others) undergo very fast motions in operation. As a consequence inertial
effects play a considerable role in the motion of cables and hoses that are attached to these parts of the vehicle. In order to
validate these kinds of scenarios, we have to move from the quasistatic to a transient simulation approach. Here we assume a
Kelvin-Voigt-type material to take damping effects into account [3]. Therefore, we additionally consider dissipative energy terms
in the system:

D =
∫ L

0
(Γ̇1 Γ̇2 Γ̇3)




ηGA1
ηGA2

ηEA






Γ̇1
Γ̇2
Γ̇3


+(K̇1 K̇2 K̇3)




ηE I1
ηE I2

ηGJT






K̇1
K̇2
K̇3


ds (3)

The dissipative energy is affecting the strain and curvature rates Γ̇ΓΓ and K̇. This leads to an extended set of parameters needed. In
addition to the above mentioned effective stiffness parameters we need to obtain the effective viscous parameters:

[ηGA1], [ηGA2], [ηEA], [ηE I1], [ηE I2] and [ηGJT ] (4)

These parameters can be further reduced by applying a theoretically deduced value for critical damping in case of tensile and
shearing load cases (see [4] and [5]). Torsional and bending damping have to be investigated experimentally.
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Figure 1: Measurement
scheme for torsional os-
cillations

Figure 2: Experimental
Setup for torsion oscilla-
tions

Figure 3: Extracted data from an example measurement

3 Experiment

Two experimental prototypes (similar to the stiffness measurements) have been setup and are being tested at ITWM. One is a
dynamic torsion test, following the standard torsional pendulum test for measuring the torsional stiffness of plastics [6] (see Fig.
1, 2 and 3). The other setup is a dynamic bending test (see Fig. 4, 5 and 6). In both tests the specimen are fixed on one end. The
free end is deflected mechanically and after releasing the decaying free oscillation is recorded using a high speed camera. Our
preliminary results are promising and indicate that the Kelvin-Voigt-type material model is suited to simulate dynamic behavior
of cables and hoses. Fitting the extracted motion data yields a damping value [ηGJ] (or [ηEI]) as well as a dynamic stiffness
parameter [GJ]dyn (or [EI]dyn). The obtained parameters can conveniently be used as effective mechanical properties within the
frame work of our simulation software.

Figure 4: Measurement
scheme for bending oscil-
lations

Figure 5: Screenshot from a
recorded motion video

Figure 6: Extracted data from an example measurement
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EXTENDED ABSTRACT

1 Introduction

Long and slender flexible body can be a part of various mechanical systems. This type of bodies is characterized by one dominant
dimension, which by its size prevails over other dimensions. Typical representatives of long slender bodies are beams, cables,
ropes, pipelines or offshore risers. Due to the slenderness, these bodies are prone to loss of stability when axially loaded, thus
they should be supported or guided during their motion. General examples of such slender bodies guided through narrow space
can be found in drilling industry, medical applications, guided cable installations and others. A specific example of such system
can be found in nuclear reactors, where long thin control rods (CR) are guided by guide thimbles (GT) to the active zone in order
to control or completely stop the nuclear reaction.

In this paper, computational approaches suitable for modelling of guided long slender structure motion are briefly summarized.
Then, a benchmark simulation of a long thin beam described by absolute nodal coordinate formulation guided through rigid
elbow pipe are shown. The practical application is then shown on a problem of nuclear reactor control rod emergency drop.

2 Overview of suitable modelling approaches

Since the flexible slender structures can perform large motions inside the guidance, the approaches used in flexible multibody
systems dynamics can be successfully used for their modelling. The most common approach for modelling of flexible bodies
within multibody systems is the floating frame of reference formulation (FFRF) [1], which is in its classical form suitable for
small deformations problems. The main advantage of FFRF lies in the possible usage of component mode synthesis and thus
fast and efficient simulations. Other approaches suitable for slender beam structures are finite segment method or rigid finite
elements method, which are based on the flexible body division into small rigid segments interconnected by elastic elements.
These approaches may also lead to fast simulations, but in case of more curved guiding tubes they would require more segments
to properly describe bending properties of a flexible body, which can, on the other hand, decrease the time efficiency. Another
suitable approach is the geometrically exact beam formulation [2], which is both accurate and effective. Last but not least, the
popular absolute nodal coordinate formulation (ANCF) of finite elements [1] can be used for modelling of slender flexible bodies
guided through narrow space. This approach is suitable for large deformation problems, that can be advantageous in problems
of more curved guiding tubes. One of the main disadvantage of ANCF lies in the nonlinear formulation of elastic forces, that
can lead to time consuming numerical integration, but several works have been published that are dedicated to ANCF efficiency
increase [3, 4].

3 Benchmark simulation

A new benchmark problem for a beam and a curved pipe dynamic interaction testing is proposed in this paper. In a benchmark
simulation of a flexible slender structure, the ANCF thin beam [5] was used for modelling of 1 m length slender beam with radius
0.01 m. The beam moves inside a curved rigid pipe and a vertical force 30 N is applied on its upper end. The inner radius of
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Figure 1: The snapshots of the slender beam center-line (red) and its limited space (black)
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pipe is 0.015 m. The Young’s modulus is set as 1e9 Pa, material density of the beam is 7800 kg/m3. The interaction between the
beam and pipe was modelled using Hunt-Crossley’s contact model and smoothed Coulomb friction model [6]. In Figure 1, the
flexible beam center-line shape in discrete time steps is shown together with the boundaries, that guides the beam motion. This
simple benchmark simulation can be used to verify the model efficiency and accuracy and can serve also as a standard example
of a flexible slender structure guided through narrow space.

4 Control rod drop model

The practical application of described methodology is shown on the nuclear reactor CR drop problem. In case of emergency, the
CRs fall down to the active zone of nuclear reactor to stop the reaction. The CR moves inside the water filled GT that can be
slightly deformed by operating conditions. In order to successfully stop the nuclear reaction, the CR should fall down about 4
meters in the limited time 3.5 s (VVER 1000 type of reactor). Due to the GT deformation (C or S shape of deformation commonly
occur), the CR may get stuck, which is very dangerous condition for the nuclear power safety.

This particular problem is represented by a long thin rod modelled by ANCF thin beam elements, that is moving inside a thimble
modelled by classical beam finite elements. Both interacting bodies are considered as flexible and other external effects, such as
water flow are considered. In Figure 2, the schematics of the problem is shown and the time histories of the CR tip vertical position
and velocity for various maximal GT S shape deformations are shown. The model helps to predict the limit GT deformation for
safe nuclear power plant operation. Also various other phenomena, such as the influence of operational vibrations or seismic
excitations on the CR drop time can be further studied.
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Figure 2: Scheme of the CR drop model and the CR tip vertical position and vertical velocity for various maximal deformation
of the GT
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EXTENDED ABSTRACT 

1 Introduction 

The spiral strands are widely employed in different applications; therefore, having a tool to predict their behavior is of great 
importance. Many theoretical models are available in the literature since the early fifties, which could be categorized into two 
main types, namely the semi-continuous and discrete formulations. There are also different articles regarding the numerical 
simulation of spiral strands. Most of these articles either use full 3D FEM simulation [1], or an altered version of FEM, e.g., 
concise finite element model [2].  

In this paper, a finite element simulation of spiral strands using 1D finite strain beam model [3], focusing on the role of frictional 
contact and residual stresses on the bending behavior, is presented. It is well known that the spiral strands exhibit a nonlinear 
behavior in bending [4], due to the frictional contact interactions between wires. According to the literature, the bending stiffness 
of these strands varies between a maximum, corresponding to the state where all the wires are stuck together, and a minimum, 
where all the wires are sliding. The presence of both residual stresses and intralayer contact due to the manufacturing process is 
suggested to explain why the maximum bending stiffness is reached in case of bending without external tensile load, in line with 
the experimental results. In order to have high bending stiffness in case of bending without external tensile load, in the absence 
of detailed knowledge of the residual stresses induced by the different phases of the manufacturing process, a simplified method 
for modeling these stresses is presented. Finally, through several numerical examples, the proposed numerical scheme is verified 
against bending experimental results.  

2 Kinematically enriched beam model 

The position vector for any material particle, 𝝃, of the beam with a curvilinear abscissa 𝝃𝟑 is written as a first order Taylor 
expansion with respect to the transverse coordinates 𝝃𝟏 and 𝝃𝟐 in the cross section as: 

                                                                𝒙(𝝃, 𝒕) = 𝒓(𝝃𝟑, 𝒕) + 𝝃𝟏𝒈𝟏(𝝃𝟑, 𝒕) + 𝝃𝟐𝒈𝟐(𝝃𝟑, 𝒕)                     (1) 

where 𝒓 is the position of the center of the cross section, and 𝒈𝟏  and 𝒈𝟐 are the two section directors. Since the section directors 
are unconstrained, plane deformations of the cross section could be captured, and each node has 9 degrees of freedom. The 
Green-Lagrange strain tensor could be written based on the 3 above kinematic vectors, and a full 3D elasticity law is used. 

For the formulation of contact between two beams, intermediate geometries are used to consider both parts of beams in contact 
symmetrically. The contact elements are defined at discrete points of the intermediate geometries, for each pair of particles 
candidate to contact. 

3 Residual stresses due to manufacturing process 

The spiral strands exhibit hysteretic behavior, which in case of elastic behavior of individual wires, is solely due to the frictional 
contact interactions between different wires. According to the literature, the bending stiffness varies between two limit cases, 
namely the full slip and full stick states.  

Due to the helical geometry of spiral strands, the wires’ tensile forces produce a contact pressure that could prevent the wires 
from sliding. Therefore, the tensile stresses of the wires directly affect the contact pressure, and consequently, the bending 
stiffness of the strands. The high bending stiffness of unstressed spiral strands [5], suggests the presence of residual stresses 
which dramatically affect the bending stiffness. However, based on experimental and numerical evidence, the maximum bending 
stiffness could not be achieved by having only interlayer contact. 
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In the present study, the residual stresses are modeled by considering residual bending strains for all wires, which after relaxation 
of the strand without external loads, will cause pretension in the wires. This pretension induces a contact pressure between wires, 
that prevents them from sliding. Moreover, to have a very high initial bending stiffness as observed in the experiment, a small 
alteration in the nominal configuration, in order to force intralayer contact, has been made. The parameters of the strand, which 
has been studied here and in [3], are given in Table 1. 

Layer 
No. of 
wires 

Wire diameter, nominal 
configuration [mm] 

Wire diameter, altered 
configuration [mm] 

Young’s Modulus 
[GPa] 

Lay angle 
[°] 

Core 1 4.4 4.38 210 - 

1 6 4.4 4.29 210 10.15 

2 12 4.4 4.39 210 12.6 

3 18 4.4 4.42 210 13.96 

4 24 4.4 4.43 210 14.23 

5 30 4.4 4.43 210 15.4 

Table 1: Parameters of the 5-layer spiral strand 

4 The bending behavior of spiral strands 

The force-deflection diagram of the spiral strand above for a three-point bending test is shown in Figure 1. As it can be seen, if 
no residual stress is present, all the wires act independently, and the force-displacement curve corresponds to the minimum 
bending stiffness.  Moreover, one notices that even if the cable has residual stresses, the interlayer contact is not enough to 
achieve a very high bending stiffness. Therefore, to get a behavior similar to the experiment, it is necessary to account for the 
presence of intralayer contact, which could be achieved by a small alteration in the nominal configuration.  

                

Figure 1: The axial stress caused by the residual stresses (left) and the force-deflection diagram of the three-point bending test 
(right) for a 5-layer spiral strand 
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H-1111 Budapest, Műegyetem rkp. 3, Hungary
szaboandras97@gmail.com, hanna.horvath@mm.bme.hu

2 MTA-BME Research Group on Dynamics of Machines and Vehicles
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EXTENDED ABSTRACT

1 Introduction

In the development of autonomous vehicles, engineers are facing fascinating but complex tasks. The localization of the vehicle,
the detection of the surrounding objects, the decision making, motion planning, and finally, the motion control of the vehicle
provide challenges. These challenges are even more complicated when the automated vehicle is a motorcycle. The investigations
of bicycles and motorcycles are very complex due to the fact that no in-plane mechanical models can accurately describe the
dynamics of these vehicles. However, the governing equation of the required spatial nonholonomic models cannot be handled
analytically [1, 2, 3]. To overcome this problem, we present a simplified mechanical model of a motorcycle, by which a linear
feedback controller is designed to stabilize the unstable vertical equilibrium at zero longitudinal speed using the steering system.

2 Mechanical model

The simplified mechanical model is shown in Figure 1. When the tilting angle ϕ and the steering angle δ of the motorcycle are
small, the pitch motion is negligible (see [4]). Hence, the crank mechanism in panel (b) is a possible simplified model of the
vehicle. The contact point P1 of the front wheel is modeled as a rotary joint, while the contact point P2 of the rear wheel can
move along the X-axis when the front wheel is steered. The plane of motion of the crank mechanism (marked with blue) can tilt
with the tilting angle ϕ around the X-axis capturing the tilting motion of the motorcycle. The angle between the two arms of the
crank mechanism is the steering angle δ . The internal steering torque is marked with M. Using the geometric parameters of the
vehicle shown in panel (a), the trail e, the wheelbase a+b− e and the height h of the centre of gravity determine the lengths of
the rods of the crank mechanism.
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Figure 1: The geometry of the motorbike (a) and the simplified mechanical model (b).

The equations of motion of this two degree-of-freedom mechanical model can be derived using the Lagrangian equation of the
second kind. After linearization around the equilibrium ϕ ≡ 0, δ ≡ 0, we obtain:




Jz1
P1
(a+b)2 +(Jz2

C +mb2)e2

(a+b− e)2 − mebh
a+b− e

− mebh
a+b− e

Jx1
P1
+ Jx2

C +mh2



[

δ̈
ϕ̈

]
+




0
mgeb

a+b− e
mgeb

a+b− e
−mgh



[

δ
ϕ

]
=

[
M
0

]
, (1)

where m is the mass of the vehicle, Jx1
P1

and Jz1
P1

refer to the mass moments of inertia of the steered fork-wheel system about x1 and
z1 axes with respect to the point P1 (see Figure 1(b)), respectively. Jx2

C and Jz2
C are the mass moments of inertia of the motorcycle

body about x2 and z2 axes with respect to the center of gravity C.
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3 Balancing with steering

The unstable vertical equilibrium position of the motorcycle can be stabilized by using the steering mechanism. This paper
investigates the applicability of a PD controller in detail with and without feedback delay τ . The controller actuates trough the
steering torque, namely, a lower level control of the steering servo creates the steering torque, while the desired steering angle
δdes is calculated by the higher level controller:

M =−Kpδ (δ −δdes)−Kdδ δ̇ , and δdes =−Kpϕ ϕ(t − τ)−Kdϕ ϕ̇(t − τ) , (2)

where Kpδ , Kdδ , Kpϕ and Kdϕ are the proportional and differential control gains corresponding to the steering angle and the roll
angle respectively.

First, the linear stability of the closed-loop system was checked for the zero time delay case, and the stability boundaries were
found analytically using the Liénard-Chipart stability criterion [5]. Stability charts were drawn in the Kpϕ −Kdϕ plane using
realistic, small scale vehicle model parameters, see dashed curves in Figure 2. The linearly stable domain is shaded with light
blue color. Closed form formulas can be determined for the upper and lower limits of the lower level control parameters at which
vertical position of the motorcycle is stabilizable.

Since the accurate measurement of the tilting angle requires filtering, a non-negligible time delay is introduced in the system.
Considering this feedback delay, the stability boundaries were identified using semi-discretization [6]. Even a small value of the
delay scales and shifts the stable region significantly in the stability diagram, see the dark blue domain in Figure 2.
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Figure 2: The stability chart.

4 Conclusion

A simplified mechanical model was constructed to design steering controller for balancing a motorcycle at zero longitudinal
speed. It was shown that the hierarchical linear feedback controller is capable of stabilizing the vertical position of the motorcycle
when the control gains are chosen appropriately and the feedback delay is small enough. The experimental validation of the results
is the task of future work, for which a small scale experimental rig is already designed and manufactured.
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EXTENDED ABSTRACT 

1 Introduction 

Tractor-semitrailers are articulated freight carrying vehicles, where a portion of the trailer’s load is supported by the tractor. 

Usually, these are lengthy vehicles making them difficult to manoeuvre in congested roads, since the space required to take the 

turn increases with wheelbase. Off-tracking is a metric used to measure this turning space and is defined as the radial distance 

between the trajectory of the front and rearmost axles of a vehicle during the turning manoeuvre. Many researchers, including 

Jindra [1], and Choi et al. [2] have worked on the modelling of off-tracking. Steering the semitrailer axle is one of the effective 

methods for reduction of off-tracking; however, it includes a complex system to control the steering, which makes it expensive. 

Jogi and Chandramohan [3] have developed a new hitch mechanism, termed Split fifth wheel coupling (SFWC) which reduces 

the off-tracking by a significant margin. SFWC is a passive mechanism without the inclusion of complex systems. 

It is necessary to evaluate the handling performance of the tractor-semitrailer with SFWC to ensure its safe operation. Double 

lane change (DLC) manoeuvre is one of the handling evaluation methods, wherein the vehicle swiftly changes its lane and 

comes back to its original lane to avoid an obstacle. There are various kinds of DLC specifications which have been compared 

with each other by Peng and Yang [4]. ISO DLC is one of the standards for such tests. ADAMS /Car tool is capable of 

performing the simulations of closed-loop ISO DLC test and provides good results [5].  

1.1. SFWC 

The Conventional fifth wheel coupling (CFWC) consists of a turntable fixed to the chassis of the tractor. It receives the kingpin 

of the semitrailer, forming a joint which serves not only as an articulation point, but also as the point of vertical load transfer 

from the semitrailer to the tractor. Figure 1 (a) shows the conceptual model of the tractor-semitrailer with CFWC. On the other 

hand, SFWC being a novel off-racking reduction mechanism, the articulation point and the point of vertical load transfer have 

been separated by a certain distance. It consists of two sub-units: cylindrical joint and roller mechanism, as shown in Figure 1 

(b). The former takes care of articulation, whereas the latter allows the vertical load transfer from the semitrailer to the tractor 

even when the vehicle is articulating. 

 

 
 
                               CFWC 

 
 

                                  (a) 

 
 
                                  (b) 

Figure 1. Conceptual model of the tractor-semitrailer with (a) CFWC (b) SFWC (Courtesy: Jogi and Chandramohan [7]). 

2 Methodology 

In the present work, a multi-body virtual prototype is built using the ADAMS Car tool. Initially, the Conventional fifth wheel 

coupling (CFWC) model is built as per the specifications of AASHTO Standard Design Interstate Tractor-Trailer WB-62. 

Using the template builder option, CFWC model is modified into SFWC, by adding a roller mechanism and curved track as 

shown in Figure 2. To evaluate the handling performance of the vehicle with SFWC, it is simulated for closed-loop ISO double 

lane change (DLC) manoeuvre. Five speeds are chosen for the study: 20 kmph to 60 kmph with an interval of 10 kmph. The 

actual length of the ISO DLC course is 170 m; however, to study the behaviour of the vehicle after finishing the course, the 

vehicle is run for an additional distance of about 130 m. The simulation data are used to plot the trajectory, yaw rate response, 

lateral acceleration response and articulation angle response of both the vehicle models. To understand the relative 

performance of the tractor-semitrailer with SFWC, the results of both models are compared with each other and useful 

conclusions are drawn. 

Cylindrical joint 
Roller mechanism 
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Figure 2: ADAMS CAR model of the tractor-semitrailer with SFWC 

3 Results and discussion 

The SFWC model traces the target path pretty well at lower speeds; however, it is a little unstable at higher speeds when 

compared to the CFWC model as shown in Figure 2. The behaviour of both vehicles changes significantly between 40 and 50 

kmph. The lateral acceleration response explains that the DLC is a very dynamic manoeuvre and can generate rapid rates of 

change of lateral acceleration. Interestingly, for speeds below 40 kmph, the lateral acceleration experienced by the semitrailer 

of the SFWC vehicle is less compared to that of the CFWC vehicle. One should note that the DLC manoeuvre is highly 

dependent on the driver’s steering input. The default driver model present in ADAMS/ Car tool is optimized for the tractor-

semitrailer with CFWC. Hence, the actual steering input to be given to SFWC vehicles may vary. In the present study, the 

performance of the tractor-semitrailer with SFWC is on par with that of CFWC at speeds below 50 kmph. The vehicle’s 

inability to trace the ISO DLC path is more pronounced at higher speeds. With the development of stability control systems 

like ESC, optimized for tractor-semitrailers with SFWC, their performance would improve. 

 

Figure 2: Trajectory of the tractor-semitrailer with SFWC and CFWC at various speeds 
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EXTENDED ABSTRACT

1 Context
The field of 4-wheel steering (4WS) vehicles has been gaining in interest since the improvement of on-board electronics in
vehicles. The further exploitation of the 4WS vehicle may indeed allow improving the driving comfort, agility and safety. The
4WS systems on the market for premium cars do not make a full use of the two steering axles. The use of actuated rear steering
axle is often under-exploited, as it consider only the improvement of vehicle dynamics [1] without increasing maneuverability
(crabway motion, parallel steering) that is achievable by a manual driver. This paper is related to the field of assisted ground
vehicles and more specifically to the field of 4WS systems. The work proposed in this paper aims at modelling and simulating
a 4WS vehicle in order to compute observation and control strategy for assisting a driver to control a 4WS vehicle easily and
safely.

2 State of art
In previous works, very advanced dynamic representations can be found [2]. But the large number of parameters makes them
difficult to use for control. In the opposite case, simple kinematic models have been developed for control purposes [3]. However,
these models are not representative of various phenomena, in particular: the lack of grip, the vehicle inertia, or the load transfer
phenomenon. In this paper we will use hybrid approaches allowing the use of simplified models adapted in real time by observers
[4]. These approaches are used in mobile robotics [5] on autonomous robots. The challenge here is to control the rear axle
according to the driver’s command.

3 Proposed approach
The tool developed to test the different control laws, in view of the implementation on vehicle, is a MATLAB/Simulink simulator
represented on figure 1. It is composed of several main blocks:

• Vehicle model : The evolution equations of the dynamic model adapted to the control are implemented. The only inertia
considered is the inertia of the vehicle chassis. Lateral slippage is modelled by a linear relationship between the lateral slip
forces (FF ,FR) and the drift angles (β f ,βr). The coefficient linking these two variables is the cornering stiffness Ce.

• Geometric model : The yaw rate set point θ̇target is calculated. It is the result of a purely geometric modelling of a "bicycle"
model of the vehicle in a rolling without slipping condition.

• Control law : The steering law operating on the rear steering gear is implemented. This is aimed at limiting the impact of
slippery ground on the user’s high-speed driving. Specifically, the purpose of this control is to make the 4-wheel-steered
vehicle behave like a 2-wheel-steered vehicle on non-slippery ground, such as asphalt. The control law is based on a
backstepping strategy.

• Observer : The cornering stiffness (Ce) is calculated based on the speed of the vehicle (u), the steering angles (δ f , δr)
and the measurement of the vehicle’s yaw rate (θ̇mes). This observer is based on a first order exponential decrease of the
observation error and a MIT Rule [6].

More sophisticated vehicle models can be placed in this simulator to validate the control laws already developed and to take into
account the maintaining of stability in the development of new control laws.
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Figure 1: Global control scheme

δ f / δr Front / rear steering angle
u Speed of the vehicle’s centre of gravity in the yaw plane

θ̇ / θ̇target / θ̇mes Real / set point / measured yaw rate

4 Results and perspectives
This approach provides a simulation that is representative of a real vehicle and allows the implementation of initial control laws
to optimise the behaviour of a manually steered 4WS vehicle. The first results allow the regulation of a target yaw rate given by
the front steering angle through adaptive approaches. These results will be extended to other criteria, such as space requirement,
control of the radius of curvature, and relative position of the vehicle, independently of its orientation. This requires real-time
simulations with the driver integrated. This will be done on Gazebo by adding new commands for the driver.
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EXTENDED ABSTRACT 

Recently autonomous driving vehicles with more than level 3 are widely developed, and some of them are available on the 

market. In the development of autonomous vehicles, one of the most critical issues is how to guarantee safety of the vehicle in 

real-world traffic environments. Various methods on the safety assessment have been developed, such as scenario-based method, 

function-based method, and real-world testing. In any cases, test scenarios that can adequately represent complex and dynamic 

traffic situations play a key role in verifying performance of autonomous vehicles. This work focuses on development of a novel 

risk analysis method of autonomous driving test scenarios based on Analytic Hierarchy Process(AHP) method [1] in multibody 

vehicle dynamics settings. 

 The risk analysis methods include both deterministic and probabilistic approaches [2]. The first one assesses the risk through 

computing quantitative risk indicators, on the other hand, the probabilistic approach estimates risk-taking uncertainty of vehicle 

motion, for example, the collision risk probability can be obtained by the ratio of collision position between two vehicles using 

the Gaussian distribution. However, these studies do not consider enough motion variables for the host vehicle (HV) and 

surrounding vehicles (SV), such as the relative position, orientation, and velocity, which make them less representative for 

dynamic and interactive nature of traffic situations. In this study, risk analysis of autonomous driving test scenarios, where risk 

is quantified by the relative positions, orientations, and velocities of HV and SVs modeled with multibody vehicle dynamics is 

performed. Additionally, in order to improve conventional AHP method, optimal solution between motion characteristics and 

risk index of test scenarios are used instead of subjective evaluation of comparison matrices values by scenario designer, which 

makes conventional AHP method more dependent to use cases. 

 Figure 1: Test scenario construction for multi-vehicles                   Figure 2: Hierarchy model of test scenario                

As shown in Figure 1, the motion variables of HV and SVs modeled by multibody method are represented, by longitudinal 

position, lateral position, yaw angle, and driving velocity (x, y, 𝜃, v), respectively with respect to X-Y global reference frame. In 

order to represent the relative motion variables between HV and SVs, the hierarchy model of test scenario shown in Figure 2 is 

built, where test scenario is defined as the top layer of the objective in hierarchy model, and subsequent layers of SVs, motion 

variables, and their values. Each layer plays a dominant role with its subsequent layer, and the relationship of layer-to-layer is 

transferred from top to bottom in the hierarchy model. In the Figure 2, 𝑝  represents number of layers and  𝑤𝑝,𝑞
′   is priority 

importance value calculated by AHP method.  

The comparison matrix 𝑨𝑙,𝑞 between dominant layer and subsequent layer in the hierarchy model is generated by judging the 

relative importance of elements in pairs shown as equation (1) [1]. 

𝑨𝑙,𝑞 =

[
 
 
 
 

1 𝑎1,2
… 𝑎1,𝑞𝑗

1/𝑎1,2 1   …    …  
…

1/𝑎1,𝑞𝑗

…
…

  1 
1/𝑎𝑞𝑖,𝑞𝑗

𝑎𝑞𝑖,𝑞𝑗

1 ]
 
 
 
 

      𝑞𝑖 , 𝑞𝑗 ∈ [1,   .  .  .  , 𝑛]; 𝑙 ∈ [(𝑝 − 1), (𝑝 − 2), (𝑝 − 3)]           (1) 

where 𝑨𝑙,𝑞 is the matrix of dominant layer which is the q –th factor in layer l , 𝑎𝑞𝑖,𝑞𝑗
 represent the pairwise comparison value 

between the two factors in the 𝑞𝑖 −th row and the 𝑞𝑗 −th column, 𝑛 is number of factors in the subsequent layer for matrix 𝑨𝑙,𝑞. 

Based on the comparison matrix 𝑨𝑙,𝑞, the priority importance values 𝒘 are determined by solving the eigenvalue problem shown 

as in equation (2). Priority importance values 𝒘 are obtained by an approximation method, which is computed by normalized 

comparison matrix. 

𝑨𝑙,𝑞 𝒘 = 𝜆𝑚𝑎𝑥  𝒘                                                                                     (2) 
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where 𝜆𝑚𝑎𝑥  defines principal eigenvalue of matrix 𝑨𝑙,𝑞 , 𝒘 is priority importance values of matrix𝑨𝑙,𝑞. 

In order to obtain all priority importance values in a test scenario, the priority importance values of individual comparison ma-

trices are combined into the same reference frame. The combined values in the last layer are defined as “priority importance 

index”. The priority importance index 𝒘𝑝,𝑞
′  represents 𝒘𝑝,𝑞 of individual comparison matrix comparing to layer 1 shown in Fig. 

2. There is only one path from 𝒘𝑝,𝑞
′  to layer 1, and the transfer path is recorded as 𝑅𝑝,𝑞. And each one’s priority importance value 

is 𝒘𝑘

𝑅𝑝,𝑞
. Therefore, the priority importance index comparing to layer 1 can be obtained as 

𝒘𝑝,𝑞
′ = ∏ 𝑤𝑘

𝑅𝑝,𝑞𝑝
𝑘=2     𝑘 ∈ [1,   .  .  . , (𝑝 − 1), 𝑝]                                                       (3) 

A test scenario is generated by the elements of 𝑞 in the layer (𝑝 − 1) in Figure 2 (such as,  from the “relative longitudinal position” 

in layer 3 to “50m” in layer 4). Therefore, the risk index (RI) of test scenarios can be calculated according to equation (4).  

𝑅𝐼 =  ∑  (𝑤𝑝,𝑞
′ )𝑚,𝑛

𝑖(𝑝−1)
′

𝑚=1                                                                                     (4) 

where p represents number of layers, m defines number in the order of elements in the layer (p-1), n is of that number in the 

order of elements in the next layer of element m,  (𝑤
𝑝,𝑞
′ )

𝑚,𝑛
 defines priority importance index in layer p , 𝑖(𝑝−1)

′  is elements 

number in the layer (p-1). 

Because it is difficult to determine the value of the comparison matrices of AHP in equation (1) by the scenario designer, optimal 

solution of comparison matrices values is calculated from the correlation coefficient (r) [3] between relative motion 

characteristics and risk index of test scenarios using particle swarm optimization (PSO) method. The minimum relative distance 

and minimum relative velocity between vehicles body boundary are used to represent as the relative motion characteristics 

between host vehicle and surrounding vehicle. 

A cut-in scenario is used to verify as an example of the proposed risk analysis method. In order to generate the dangerous cut-in 

scenarios, the motion variables including the relative longitudinal position (9m, 14m, and 19m), relative lateral position (3.75m, 

3.25m, and 2.75m), cut-in angle (4deg, 5deg, and 6deg), and relative longitudinal velocity (8.3m/s, 5.6m/s, and 2.7m/s) are 

defined to induce the collision scenarios. Thus, 34 = 81  cut-in test scenarios are generated, including 25 collisions and 56 non-

collisions. Figure 3 shows the correlation between risk index and the minimum relative distance (left) and minimum relative 

velocity (right) of relative motion characteristics for conventional AHP and the proposed AHP. The result shows the correlations 

coefficient of AHP method in minimum relative distance and minimum relative velocity are -0.904 and 0.925, and the correlations 

coefficient of the proposed AHP method in minimum relative distance and minimum relative velocity are -0.957 and 0.938, 

respectively. The results demonstrate that minimum relative distance of relative motion characteristics decreases with increasing 

risk index, and the minimum relative velocity of relative motion characteristics increases with increasing risk index.     

Figure 3: Correlation between risk index and minimum relative distance (left) and minimum relative velocity (right) of vehicle 

body boundary. 

This study proposes a novel risk analysis method of autonomous driving test scenarios, where risk is quantified by the relative 

position, orientation, and velocity between host and surrounding vehicles. A new analytic hierarchical model is proposed, which 

uses the optimal solution between motion variables and risk index of test scenarios instead of subjective evaluation of relative 

motion variables in test scenario by scenario designer. The performance of AHP and improved AHP models are compared in the 

cut-in test scenarios example, and the results demonstrate that the proposed risk analysis method can better predict the risk for 

test scenarios. 
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EXTENDED ABSTRACT

1 Introduction

Currently, a new high-speed maglev (magnetic levitation) train with a maximum speed of more than 600 km/h is under develop-
ment at the Chinese rolling stock manufacturer CRRC Qingdao Sifang Co., Ltd. A prototype of the future vehicle has already
been presented to the public. The new high-speed maglev train aims to close the gap between current high-speed railway tech-
nology with top speeds of 300 to 350 km/h and aircraft traveling with speeds around 900 km/h. Therefore, the new maglev
train offers a notable alternative for short- to medium-haul flights regarding economic and ecologic aspects. For safety and ride
comfort aspects, a perfectly rigid guideway would be desirable. However, with increasing stiffness requirements, the production
costs for the guideway girders are also increasing. Therefore, a tradeoff is required providing acceptable costs on the one hand
and a degree of girder elasticity that can be handled by the control system also at high speeds on the other hand. Simulations and
analyses with suitable models taking into account the dynamical behavior of the coupled system of guideway, vehicle, magnet,
and controller offer valuable contributions for finding such a tradeoff.

2 State of the Art

The dynamic interaction of maglev vehicles and their pillared track is investigated in numerous publications focusing on different
aspects. Some focus on the bending of an elastic beam representing the guideway but simplify the vehicle by a point mass
or single constant force. Others have a detailed vehicle model, but the guideway is modeled by rigid elements. In [1], these
approaches are combined with a rigid multibody vehicle crossing a single elastic guideway element. The simulation results show
that for high speeds the elastic deformation of the beam causes a disturbance that influences the vehicle dynamics for several
seconds after the vehicle has left the elastic guideway element. Thus, to predict the coupled system dynamics during a ride on
a periodically pillared track, a model is required that allows the vehicle to travel a longer distance, including multiple elastic
guideway elements. The idea of a guideway of infinite length represented by a finite number of guideway elements is discussed
in [2] but not elaborated in detail. Furthermore, a more detailed vehicle model is desirable as, for example, described in [3, 4].

3 Simulation Model

In this contribution, the multibody systems approach is used to set up a two-dimensional model of a maglev vehicle moving with
constant velocity along an infinite elastic guideway, mapping the heave-pitch motions and vertical guideway bending. Figure 1
shows a visualization of the coupled system. Based on the model from [1], the track model is extended to represent a pillared,
elastic guideway of infinite length by applying and implementing the theoretical concept of moving model boundaries described
in [2]. To do so, the complete infinite track is represented by a small number of identical single-span Euler-Bernoulli beam
elements, which are used repeatedly. Once the vehicle passed an element, this element is taken away from the rear end of the
currently considered track segment (behind the vehicle) and added at the front end of the currently considered track segment
(in front of the vehicle). So the model boundaries, given by the rear and front end of the currently considered track segment,
are shifted along the track together with the moving vehicle. The number of required beam elements depends on the number of
elements coupled by the moving vehicle.

Figure 1: Elastic multibody system with a rigid multibody vehicle traveling on a guideway modeled by an infinite series of
periodically repeating flexible beams.
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Figure 2: Basic scheme of coupled model in Simulink with vectors of air gaps sss, air gap velocities ṡss, magnet accelerations z̈zz,
voltages UUU , currents III, and magnet forces FFF .

Regarding the vehicle mechanics, the model used in [1] is replaced by a more detailed one based on the descriptions in [3, 4],
representing a section of the maglev vehicle Transrapid. It consists of rigid bodies for the car body, levitation chassis, and levi-
tation magnets. The bodies are coupled by the primary suspension between magnets and levitation chassis and by the secondary
suspension between levitation chassis and car body, resulting in more than 20 degrees of freedom.

The mechanical equations of motion for the vehicle and one guideway element are obtained in symbolic form from the Matlab-
based multibody simulation toolbox Neweul-M2 [5]. In Simulink, they are coupled with the electromagnet models from [6],
taking into account the effects of magnetic reluctances, fringing and leakage flux, magnetic saturation, and eddy currents, and
with the magnet controller presented in [7], representing an offset-free nonlinear model predictive control scheme. Thus, vehicle
and guideway are coupled by the electromagnet forces. Figure 2 shows the basic scheme of the coupled components in Simulink.
The arrangement of the available beam elements to form the currently considered track segment is also implemented in Simulink.

4 Results

The novelty of this contribution is the infinite elastic guideway formed by a repeating sequence of a few beam elements combined
with a detailed model of a Transrapid maglev vehicle. To the best of the authors’ knowledge, such a coupled system has not been
modeled and investigated yet. With this model, the vehicle moving along the elastic track over a longer distance with different
velocities is simulated. Thereby, the interaction of vehicle and guideway is analyzed in a dynamic situation, in which the vehicle
dynamics are already affected by the bending of the previously passed guideway elements at the moment when the vehicle enters
the next guideway element.
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EXTENDED ABSTRACT 

Counterbalance forklift trucks (FLTs) represent a very common equipment for material handling in industrial applications. 

Usually, the vertical compliance of their suspension systems is mainly provided by tires, since they are not equipped with elastic 

elements and/or shock absorbers, with the vehicle being supported at three points (namely, the two front wheels and the pivot of 

the rear axle, which determine the stability triangle). In addition, solid rubber tires or cushion tires are adopted for most 

applications. These features cause the behavior of FLTs during motion to be significantly affected by ground irregularities, hence 

safety issues and high dynamic loads possibly being experienced. Accordingly, new FLT prototypes manufactured by Toyota 

Material Handling Manufacturing Italy S.p.A. (Bologna, Italy), which promoted this research, must be verified with rigorous 

experimental campaigns to assess the actual vehicle response and measure the dynamic stresses that its main components may 

undergo during operation. Such tests are costly and time consuming, also because numerous transducers (typically strain gauges 

rosettes) are needed to monitor complex components properly. 

This study aims at developing a multibody model to predict the dynamic loads experienced by a FLT that hits a steel plate 

obstacle when running in straight line at constant high speed, which is one of the most critical testing conditions in the 

manufacturer’s verification protocols. In particular, the final objective is implementing reliable numerical tools to achieve an 

accurate estimate of the dynamic stresses acting on the FLT main components (in particular, the chassis), hence possibly reducing 

the need for experimental tests. To the Authors’ best knowledge, most of the studies on FLT dynamics available in the literature 

dealt with the topic of vehicle stability [1], whereas only few works aimed at developing predictive models to help the structural 

and durability design of FLT components [2]. The results presented in [3] have been exploited to develop a new model that takes 

into account the load handling assembly dynamics. 

The studied vehicle is an electric FLT characterized by a total mass of about 6 tons and a load capacity of 2.5 tons. The front axle 

is driven by an electric motor while steering is located in the rear axle. The FLT is equipped with two couples of wheels, with a 

bigger radius for the front axle tires. The load handling assembly (forks, fork positioner and mast) includes two actuation systems: 

two hydraulic cylinders (referred to as tilt cylinders) act symmetrically between the chassis and the mast (one on each side) and 

control the mast tilting angle; one further hydraulic cylinder controls the fork positioner lifting (and the mast extension) through 

a transmission chain. 

Experimental tests were conducted to characterize the behavior of the studied FLT in the condition of interest. The FLT was 

equipped with six accelerometers and two load cells. Two piezoelectric accelerometers were placed on the left and right sides of 

the chassis, near the wheel hubs of the front axle, with vertical measuring axis: these accelerations are the reference signals for 

the comparison with the numerical model. One piezoelectric accelerometer was placed on the rear part of the chassis, laying on 

the vehicle vertical-longitudinal plane and close to the rear axle pivot, for measuring vertical acceleration as well. One triaxial 

MEMS accelerometer was placed on the frame under the operator seat, for monitoring the accelerations along the longitudinal, 

vertical and lateral directions, respectively. Two piezoelectric accelerometers were installed on the left and right sides of the mast, 

above each tilt cylinder joint. The two load cells were placed in the mast/tilt cylinders connections, replacing the joint pivots and 

measuring the axial forces exerted by the tilt cylinders (referred to as tilt forces). Signals were acquired with a sampling frequency 

of 1 kHz. A low-pass filter (cutting frequency 50 Hz) has been applied in the post processing, since no relevant frequency content 

was observed above 20 Hz. Two loading conditions were tested: the unloaded FLT (referred to as NL condition); the FLT loaded 

at about 80% of its capacity (WL). Five passages on the obstacle at constant velocity were carried out for each loading condition. 

The mast was kept tilted by 8° backwards, with the forks close to the ground. 

Figure 1 shows the analysis in frequency domain of the acceleration signal acquired from the left-front axle (LFA). A major 

resonance at about 5 Hz that can be related to the bounce mode of the vehicle (front and rear axle appear in phase by applying a 

narrow pass band filter to the signals) is observed. The signal appears to be significantly affected also by the dynamics of the 

mast. Indeed, the other frequencies excited between 8 and 13 Hz are reasonably related to the response of the load handling 

assembly. Out-of-plane phenomena appear negligible. 

A numerical model of the complete FLT (Figure 1) is implemented by using the multibody software RecurDyn (FunctionBay, 

Seongnam, South Korea). The model accuracy is evaluated in terms of its capability to correctly predict two measured quantities 

that are deemed essential for assessing properly the FLT dynamics, according to the manufacturer’s knowhow: (i) vertical 

acceleration of the front axle, in terms of amplitude and location of the highest peak (generated by the impact with the obstacle), 

and of frequency content; (ii) tilt force, in terms of amplitude and location of the highest peaks, and of frequency content. All the 

FLT parts are modelled as rigid bodies. Their mass properties are assigned based on both CAD geometries and experimental 
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measurements. Contact ground-to-surface functions between ground and wheels are set. However, the actual tire compliance is 

modeled by using a nonlinear lumped-stiffness parameter acting between each wheel and the corresponding axle, estimated from 

the static load-deflection curve provided by the tire manufacturer. The lifting actuator is modeled with as a nonlinear spring that 

generates a null force when the fork positioner assembly rebounds. The tilt cylinders are modeled with a single linear spring 

acting on the FLT vertical-longitudinal plane of symmetry: the corresponding stiffness has been estimated with a dedicated test 

to measure the frequency content of the tilt forces generated by a load rapidly moving downward. The load in the WL condition 

is a rigid block supported by the forks through contact functions. The static load on the four wheels and the static tilt force 

computed with the model closely match the measured ones (error below 1.5 %). 

  

Figure 1: Normalized Power Spectral Density of the LFA acceleration (left) and numerical model (right) 

 

Simulations of the vehicle dynamics are performed by prescribing the motion of the driving wheels, through velocity functions. 

Figure 2 shows the comparison between the measured data and the numerical results (normalized with respect to the measured 

maximum value) concerning the NL case, for the LFA acceleration and the tilt force. Both quantities are matched satisfactorily 

by the current model, in terms of amplitude, main resonance and general damping.  

A further model updating is ongoing to improve the accuracy for the WL condition. The focus is on refined models for the 

compliance of tires and tilt cylinders, as well as for the load/forks interaction. These are deemed as the key aspects to be 

investigated, since the presence of the load may emphasize nonlinear effects related to them. 

 

Figure 2: Experimental (exp) vs. numerical (sim) results, NL condition, LFA acceleration (left) and tilt force (right) 
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H-1111 Budapest, Műegyetem rkp. 3, Hungary

illes.voros@mm.bme.hu
takacs@mm.bme.hu

EXTENDED ABSTRACT

1 Introduction

Nowadays, with continuous advances in the development of autonomous vehicles, research in the field of vehicle dynamics
has become even more significant. As the level of automation develops, the applied control algorithms, and the increasing
computational resources allow the vehicle to operate in such formerly avoided parameter ranges where the nonlinear properties
of the vehicle system become relevant, e.g., see [1, 2]. These enhanced motion control systems allow also the realization of
complex path-following tasks that could not be or could hardly be done by human drivers [3]. Reversing a truck with one or more
trailers is one such challenge.

In this paper, the straight-line reverse motion is investigated in case of a truck-full trailer combination. This vehicle system
contains two articulated joints, which makes the control of the reversing to be a complicated task for human drivers. The
kinematic model of the vehicle is presented and a linear feedback controller is designed taking into account the feedback delay
in the control loop.

2 Mechanical model

The single track kinematic model of the truck-full trailer combination is presented in Fig. 1. The vehicle system is modeled by
the three rods, which are denoted by the encircled numbers in the figure: 1 represents the truck; 2 is the drawbar that creates
the coupling between the truck and the trailer; and 3 denotes the trailer. At points F, R, T2 and T3, rigid wheels are considered,
i.e. the side slip of the tires is neglected and the rolling direction of the wheels are described by four kinematic constraints. The
longitudinal speed of the towing vehicle is set to be equal to the constant value V .
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Figure 1: Mechanical model of the truck-full trailer combination

The motion of the system is described by five generalized coordinates: XR,YR are the coordinates of the rear axle center point R;
ψ1 is the yaw angle of the towing vehicle; ϕ2 and ϕ3 denote the relative yaw angles of the drawbar and the trailer, respectively;
δ is the steering angle of the front wheel of the towing vehicle.

Considering all the kinematic constraints and the dynamics of the steering mechanism, the equations of motion of the system can
be obtained as

Ẋ =V cosψ1, Ẏ =V sinψ1, ψ̇1 =
V
l

tanδ , ϕ̇2 =− V
l · l2

(l sinϕ2 +(l2 +acosϕ2) tanδ ) ,

ϕ̇3 =− 1
l3
(V sin(ϕ2 +ϕ3)+aψ̇1 cos(ϕ2 +ϕ3)+ l2(ψ̇1 + ϕ̇2)cosϕ2)− (ψ̇1 + ϕ̇2), δ̇ = ω, ω̇ =

T
J
,

(1)
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where J is the mass moment of inertia of the steering system and T (t) =−kp(δ (t)−δdes(t))− kdδ̇ (t) refers to the steering torque
that realizes the desired steering angle δdes. In this study, the desired steering angle is calculated based on the linear feedback
that maintains the straight-line reverse motion (V < 0) of the vehicle system along the X-axis:

δdes(t) =−PYY (t − τ)−Pψ1ψ1(t − τ)−Pϕ3ϕ3(t − τ) , (2)

where τ is the feedback delay, PY , Pψ1 and Pϕ3 are the control gains.

3 Control

The equations of motion linearized around the straight-line reverse motion can be given via the state-space representation
ẋ(t) = Ax(t)+Bu(t − τ) with u(t) = Kx(t). One can prove that the control law (2) maintains the controllability and the observ-
ability of the system. Based on the characteristic equation, the linear stability of the closed-loop system can be analyzed using
the D-subdivision method [4]. A stability chart is shown in Fig. 2, where the gain of the lateral position is fixed at PY = 2 rad/m,
and the stable parameter regions of the other two control gains are depicted for different feedback delays. Different shades of
blue denote the linearly stable region of control gains for various amounts of time delay. As shown, even if the feedback delay is
relatively large, the straight-line reverse motion can still be stabilized.

-8

0

-5

-10

-15

-20

-25

-7 -6 -5 -4 -3 -2 -1 0

τ = 0.01 s
0.02 s

0.05 s

0.1 s

P
φ

3 
[1

] 

 Pψ1 [1]

PY = 2 rad/m

Figure 2: Stability chart in the plane of control gains Pψ1 and Pϕ3 for different amounts of time delay for different time delays.
Parameter values: V = −0.3 m/s, l = 0.24 m, a = 0.05 m, l2 = 0.2 m, l3 = 0.25 m, J = 10−6 kgm2, kp = 3 · 10−4 Nm,
kd = 1.7321 ·10−5 kgm2/s

4 Conclusion

A linear feedback controller is designed to stabilize the straight-line reverse motion of a truck-full trailer system. It is shown
that utilizing the lateral position, the yaw angle of the towing vehicle and the relative angle of the trailer and the drawbar ensures
the linear stability of the system even in the presence of time delay. In our study, we also validate our results via numerical
simulations and laboratory experiments, moreover, we realize the general path-following of the vehicle system in reverse motion.
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EXTENDED ABSTRACT 

1 Introduction 

An insect-type flapping wing micro aerial vehicle (FWMAV) has a unique flight mechanism for maneuver. First, it uses two 

flexible wings to generate the aerodynamic forces. The flexibility of the wings should be considered because it affects the 

performance, such as thrust and power. Second, there are no control surfaces and tail wings. Thus, additional device should be 

utilized for producing the control forces for maneuver and stability. 

In this abstract, 23-g insect-type FWMAV is to be simulated by finite element (FE)-based multibody dynamics. In order to 

consider its flexibility, the geometrically exact beam (GEB) element [1, 2] will be adopted. Also, the variational asymptotic 

methods-based analysis is conducted for the cross-sectional properties of the corresponding beam [3, 4]. The additional devices 

are modeled by simplifying the detailed configuration and by implementing the operation principle. The aerodynamic coefficients 

such as lift and drag are estimated by a prediction model [5] and Peters’ two-dimensional unsteady aerodynamics [6, 7]. To reflect 

the environment of thrust experiment, where FWMAV is connected to a load cell, fixed boundary conditions are imposed for the 

simulation. 

2 Present insect-type FWMAV 

The present 23-g insect-type FWMAV is capable of generating the aerodynamic forces by its two flexible wings during the 

flapping motion with an amplitude of ±80°. Also, a trailing edge control (TEC) device is embedded for control forces. TEC 

device consists of three rotary actuators and several joints. The roots of the main wings are connected to the joints through a 

linkage. Regarding its operation, receiving the control signal, the torque of the actuator is transmitted to the linkage and twists 

both wings. In such manner, the twist angle of the both wings will vary during the flapping motion and generates an asymmetrical 

aerodynamic force, which results in control force. Specifications of the present FWMAV are described in Table 1. 

Table 1: Specifications of the present FWMAV 

Classification Value Classification Value 

Total weight 23 [g] Control method Trailing edge control 

Wing span 125 [mm] Flapping amplitude ±80 [°] 

Aspect ratio 4.12 Linkage operation angle ±9 [°] 

3 Simulation methodology 

In order to simulate the present FWMAV, FE-based multibody dynamic analysis, DYMORE [1, 2], will be adopted. The 

schematic diagram of the fluid-structure interaction (FSI) analysis is shown in Figure 1. Starting with the prescribed motions as 

initial condition, displacements and velocities at the current time step are obtained. Then the aerodynamic loads will be estimated 

by reflecting the updated displacement and velocity of the wing. As a result, the estimated aerodynamic forces will become a 

revised input to the structural analysis at next time step. 

The structural model is divided into flexible multibody dynamics and rigid body motion. To consider the nonlinear flexible 

behaviors of the main wings, GEB elements are employed along with the cross-sectional properties obtained by the commercial 

software VABS [3, 4]. Each wing is discretized into 125 spanwise stations. The connectivity between the wing and the fuselage 

consists of four kinematic constraints under the relative rotating motion [8]. To represent TEC modeling, rigid body elements 

are employed for linkages and connected to the fuselage by three individual revolute joints to implement pitching, rolling, and 

yawing motion. 
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The aerodynamic model in the present framework provides the steady and unsteady aerodynamic loads as shown in Figure 1.  

The air station is located at 25% chord length and discretized into 125 ones in the spanwise direction. To obtain the steady 

aerodynamic load, the lift and drag coefficients are obtained by reference to Taha et al. [5]. Also, the unsteady aerodynamic load 

is estimated by using Peters’ unsteady aerodynamic model [6, 7]. 

 

 

Figure 1:  Schematic diagram of the FSI framework 

4 Results and conclusion 

The present analysis is validated against the thrust measurement experiment. For comparison, the numerical simulation is 

performed at a flapping frequency of 12 Hz. The average thrust of the numerical simulation is estimated 17.4gf, which shows 

good agreements with the experimental result of 17.8gf. On the other hands, the adequacy of the control mechanism is evaluated. 

The estimated control forces show an increasing tendency in terms of the control inputs within the linkage operation angle of 

±9°. Therefore, it is concluded that the present control device is capable of generating adequate control forces during the flight.  

In the future, the present numerical framework will be applied to obtain the non-dimensional aerodynamic derivatives to design 

of a proportion - integration - derivation (PID) controller. Then, the numerical simulation regarding the attitude adjustment will 

be conducted by the present numerical framework. 
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EXTENDED ABSTRACT 

1 Introduction 

This work presents a multibody formulation for railway vehicles that applies linearization at vehicle kinematics and equations 
of motion. The proposed formulation is greatly linearized because it adopts multiple moving reference frames and relative body-
track frame coordinates as shown in Fig. 1, against other formulations that employ relative-track frame coordinates [1] or absolute 
coordinates [2]. This is, each vehicle body has its own track frame that follows the vehicle movement keeping its longitudinal x-
axis tangent to the trajectory followed. 

 
In this context, one of the main advantages of relative body-track frame coordinates is that vehicle-bodies and vehicle to track 
interactions depend on their relative position with respect to the track, which in most scenarios result in relative-small generalized 
coordinates. For this reason, the kinematic and dynamic linearization can be applied with little loss of accuracy and important 
gained in computational efficiency. However, it has an important drawback that is the need of curvilinear coordinates for the 
description of the each moving frame.  

 
Figure 1: Kinematics of the bodies of a railway vehicle with relative body-track frame coordinates 

 

2 Method description 

The proposed formulation presented in this work describes the vehicle as a set of open-chain mechanisms (see Fig. 2) and applies 
linearization at those rotational matrices when the relative-small angle assumption can be adopted between bodies that comprise 
the same chain and between different chains.  

In addition, using symbolic computation to formulate the equations of motion, the velocity transformation matrices used to 
account for the generalized mass matrices and forces are also linearized taking advantage of the use of relative body-track frame 
coordinates.  
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Figure 1: The railroad vehicle as a set of open-chain mechanisms 

 

3 Numerical results  

Numerical results of a railway vehicle with the proposed formulation are compared to those obtained using a non-linearized 
formulation in terms of accuracy and computational efficiency during a 1-km track length case study. In both simulations, relative 
body track frame coordinates and reference frames remain the same. Also, track geometry, suspension forces and wheel-rail 
contact forces, which for this work the simplified wheel-rail KEC-method [3] is used (2-dimensional wheel-rail constraint Knife-
edge Equivalent Contact method), remain the same to emphasize the role of the proposed linearization.  
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EXTENDED ABSTRACT 

1 Introduction 

One of the mechanical characteristics of the general railway freight vehicles is their friction damped suspensions, which are not only 
a cheaper construction but also sturdy and with reduced maintenance costs. .The multibody modelling of this type of vehicles 
requires features that are seldom available in commercial multibody codes but which are well matured in different multibody 
dynamics approaches. In all these vehicles the existence of clearances between the mechanical components of the suspension 
elements is require no only to ensure a construction with economical tolerances and adjustments but also to provide the friction 
characteristics required for the damping of the suspensions. The need to consider the clearance joints in the vehicle model also 
requires the use of suitable normal contact force and friction models to allow for a realistic representation of the relative kinematics 
between the mechanical elements. In this work the clearance joint models proposed by Ambrosio et al. [1] are used to represent the 
relevant mechanical joints of the freight vehicle elements. In the process of using this methodology, the study of impact of different 
friction models, as those reviewed by Marques at al. [2] on the system performance is carried. The methodologies suggested in this 
work are applied to the study of the dynamics of a freight train composed by a locomotive and two wagons. 

2 Methods 

General railway vehicles are commonly modelled by using perfect kinematic joints and specialized force elements to represent 
the kinematic restrictions between mechanical elements. The unified clearance joint formulations, proposed by Ambrosio et al. 
[1] are used in this work to represent most of the clearance joints in the vehicles suspension systems depicted in Fig. 2. The 
modified Kelvin-Voight normal contact force model [1,3] is used to represent the normal contact forces for all clearance joints. 
The friction in the clearance joints, or in the contact elements of the vehicle suspensions, plays a critical role in the vehicle 
dynamics. Among the different friction force models explored by Marques at al. [2] in their work the Amontons-Coulomb model 
with Threfal smoothing, representing the simplest static friction model, the Akay and Bengisu model, which already includes 
some representation of stiction, and the Gonthier friction model, which is a dynamic friction model based on the concept of 
bristle deformations, are tested here. The application to the dynamics of a freight train, shown inFig. 1, allows to understand the 
importance not only of considering models that are able to represent the importance of static and dynamic friction coefficients, 
Stribeck velocity or local deformations on the vehicle dynamics 

 

Figure 1: Simulation scenario of a freight train made of a locomotive and two wagons. 

3 Models and Results 

The models of a diesel freight locomotive with friction damping and of a wagon are developed, leading to the models outlined 
in Fig.2. Particular relevance is given to the modelling of the mechanical elements responsible for the friction damping of the 
suspensions, labeled in Fig. 2 as friction surfaces. The freight train, composed of a locomotive and two wagons is studied in a 
realistic scenario in which they are operated in a mountainous track with metric gauge. Preliminary results show rather small 
variation on the vehicle dynamic response as a function of the suspension friction characteristics. It is observed that larger 
differences in the dynamic response occur due to the stick-slip transition in the contact elements of particular components in the 
transition between track segments with constant radius and transition curves. Moreover, it is observed that the efficiency of the 
computational simulations depends greatly on the transition velocity, or Stribeck velocity, used in each of the friction models. 
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Figure 1: Exploded views of a railway locomotive and freight vehicle highlighting the friction elements used for the 
suspension friction damping 

4 Preliminary Conclusions 

The modelling features provided by the clearance joints are instrumental for the realistic modelling of freight railway vehicles, 
in which the friction damping of the suspensions plays a major role in their dynamics. It is observed that different friction models 
play a role in the vehicle dynamics in particular conditions. It is expected that, when operating in tracks with irregularities, the 
importance of representing the stick-slip transition in the contacting elements is reduced..   
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EXTENDED ABSTRACT

Motorcycle accidents are inherently chaotic and often have serious or fatal consequences for the riders involved. The complex
nature of these accidents hinders the development of effective protection mechanisms for the riders as well as the repeatable
investigation of the coherence of a motorcycle and a motorcyclist’s equipment design with accident consequences. Common
strategies used in the vehicle development process of passenger cars for occupant protection break down the accident event into
several individual problems. Thus, in experiments and simulations, the interaction of the vehicle with the accident opponent
and the behavior of the occupants within the vehicle interior are often considered separately. Full-vehicle laboratory crash tests
or simulations of new products are rarely carried out during the design process but rather at the very end of the development
to ultimately prove the occupant protection for vehicle approval or to evaluate occupant safety for consumer ratings. Such a
breakdown is usually not possible when investigating accidents involving current conventional motorcycles, e.g., in collisions
with passenger cars. Here, the passenger interacts with the motorcycle and the opponent, as well as the road and road-side
structures. A safety concept that restrains a motorcyclist to a motorcycle and protects the rider from the accident environment
therefore not only has the advantage of potentially improving passive safety, which must be proven, but by separating the occupant
from the accident environment this enables more systematic investigation methods. Such an investigation strategy, based on
multi-stage multibody systems (MBS) and finite element (FE) methods, will be explained and demonstrated in this work using a
concept of a novel passive safety system for motorcycles.

The novel safety concept, shown in Figure 1, consists of a newly designed motorcycle body, seat belts, multiple surrounding
airbags, foam leg impact protectors and side impact structure. The concept envisages that in the event of an accident, the rider
is restraint to the motorcycle by two thigh belts. This causes the rider’s upper body to rotate around the belt restraint. The
surrounding airbags then decelerate the upper body rotation in a controlled manner and protect the rider from hard contacts
with accident opponent, the road, and road-side structures. The foam leg impact protectors absorb the impact of the legs on
the motorcycle cockpit and the side impact structure protects the lower extremities laterally. For the design of the involved
safety systems and the investigation of their protective performance in representative accident scenarios, simulation driven design
methods are needed as an alternative to costly experimental methods. To be able to try many different solutions efficiently, models
with varying levels of complexity and computing effort and that capture different aspects of accident are necessary.

receding windshield

foam leg
protectors

sid
impact struc

airbags

thigh belts

 0 ms 20 ms

Figure 1: Safety systems of the novel safety concept for motorcycles. A video of the safety concept is shown in [1].

This work outlines the procedure of a virtual simulation-based product design consisting of three successive development stages
with a continuously increasing level of detail and expected fidelity shown in Figure 2. In the first stage of the simulation strategy
the motorcycle, the airbags, the belts, and a rider surrogate are modelled in a combined MB and FE approach in the MADYMO
software environment [2]. The MB motorcycle model replicates (i) rotating wheels, (ii) front and rear suspension, (iii) front fork
steering and (iv) front fork impact deformation with coupling and contact characteristics based on fitted simulation models of
full-scale crash tests of conventional motorcycles [3]. In the second stage, the motorcycle cockpit is modelled further detailed in
the FE LS-Dyna software environment with now also deformable cockpit surfaces that include the foam impact protectors [4].
To replicate the crash dynamics, the multiaxial rigid body motions of the MB simulations are applied as prescribed motions for
the motorcycle and car’s outer bodies where the car’s body geometry acts solely as reaction surfaces for the airbags. The third
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stage is a full FE representation of the motorcycle, the already tuned passive safety systems, a rider surrogate, and an accident
opponent in LS-Dyna. The motorcycle’s structurally relevant components that determine the crash behaviour are deformable.
The front and rear suspension, rotating wheels and front fork steering are modelled with joints.

Stage 1: Motorcycle interaction with accident 
opponent and dummy response with MB models

Stage 2: Detailing the driver interaction with
motorcycle components in FE environment

Stage 3: Full FE representation of 
motorcycle, dummy and accident opponent

Figure 2: Numerical research strategy

The first stage MB approach features low complexity and low numerical costs while capturing the essential physics of the colli-
sion. This represents a numerically efficient way to tune and improve the safety system, i.e., adapting the properties, shapes and
locations of the safety components. The third stage full FE approach aims to fully represent the interaction of the collision to
accurately predict the performance of the finalized design by replicating every structural component of the vehicles in great detail.
However, this is bought by a challenging model generation and significantly increased computational efforts. The advantages of
the second stage partial FE approach using MB-vehicle interaction of the numerical strategy presented here are the successive
methodological model generation and gradually increased level of detail and expected fidelity while significantly reducing com-
putation time compared to a full FE model representation. Among others, this offers the possibility to consider a larger variance
of accident scenarios or occupant diversity or to enable very complex and numerically expensive investigations with FE human
body models.

The shown numerical research strategy outlines a novel procedure in virtual motorcycle accident research and passive safety
equipment development that is very similar to common strategies in the development process of passenger cars for occupant
protection. It shows clear advantages regarding a systematic model generation approach and step-by-step validation of individual
components with reduced computational effort and model complexity. The strategy enabled the virtual design and dimensioning
of a novel safety system with little time and resources. Although the procedure is presently applied only under the conditions of
a novel safety system for motorcycles, the application of similar procedures in virtual research for conventional two-wheelers are
highly desirable.
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EXTENDED ABSTRACT 

1 Introduction 

NASA's Ingenuity Mars Helicopter has recently performed the first powered controlled flight on another planet. However, in 

spite of success of this mission, rotary wing solution might not be the optimal technology for flying in thin Martian atmosphere. 

The low density of the atmosphere (only 1% of the Earth's) forces the aircraft to fly at low Re numbers, which significantly 

deteriorates the performance of a rotary wing [1]. On the other hand, insects fly very efficiently at the same Reynolds numbers, 

with great aerial capabilities, which makes the insect-type aircraft a promising concept for Mars exploration [2]. To this end, the 

novel optimization algorithm for development of insect-type aerial vehicle, capable of flight in Martian atmosphere, is proposed. 

2 Method 

The novel optimization algorithm combines Discrete Mechanics and Optimal Control (DMOC) approach with quasi-steady 

aerodynamical model [3]. The basic assumption of the quasi-steady aerodynamic model is that the aerodynamic forces are 

inherently time independent which means that the aerodynamic forces directly depend only on kinematic variables [4]. This 

simplification, combined with adequate experimental data, results in the aerodynamical model with a good ratio of accuracy and 

computational efficiency. The utilized quasi-steady model encompasses three main aerodynamic phenomena, namely, lift 

enhancement due to stable leading edge vortex during stroking motion, lift enhancement due to rapid pitching rotation at the end 

of the stroking motion, and added mass effect. On the other hand, DMOC is a direct transcription method, for optimal control 

problems in mechanics, in which discretization of the Lagrange-d’Alembert principle results in the time stepping equations that 

are implemented as equality constraints in the constrained nonlinear optimization problem [5]. This leads to the “natural” discrete 

description of the inherently continuous problem, which means that the domain of the objective function is not constrained with 

some predefined set of parametric functions. This approach is not constrained by the user input and can yield any solution that 

respects the physical laws, in other words, optimal solution can be obtained without an excellent initial guess. 

The flapping-wing vehicle is modeled as a system of three rigid bodies based on the morphological characteristics of the fruit 

fly (lat. Drosophila melanogaster). In order to achieve sufficient lift force wings are uniformly scaled with various scaling 

numbers. Furthermore, wings have two rotational degrees of freedom, one for stroking and one for pitching motion. Both motions 

are discretized with 100 points, which means that the optimization problem has 200 variables. The goal of optimization is to 

minimize energy consumption, that is, to find the most efficient flapping pattern for hovering in the Martian atmosphere. 

The discrete constrained nonlinear optimal control problem is stated in the following form: 

 

              min
𝑢𝑑

          𝐽𝑑(𝑞𝑑 , 𝑢𝑑), (1a) 

   

 𝑠. 𝑡.            𝑝𝑘 + 𝐷1𝐿𝑑(𝑞𝑘, 𝑞𝑘+1) + 𝑓𝑑
−(𝑞𝑘, 𝑞𝑘+1, 𝑢𝑘) = 0, (1b) 

              𝑝𝑘+1 − 𝐷2𝐿𝑑(𝑞𝑘 , 𝑞𝑘+1) − 𝑓𝑑
+(𝑞𝑘 , 𝑞𝑘+1, 𝑢𝑘) = 0,  (1c) 

                            𝑝0 + 𝐷1𝐿𝑑(𝑞0, 𝑞1) + 𝑓𝑑
−(𝑞0, 𝑞1, 𝑢0) = 0,  (1d) 

            𝑝𝑇 − 𝐷2𝐿𝑑(𝑞𝑁−1, 𝑞𝑁) − 𝑓𝑑
+(𝑞𝑁−1, 𝑞𝑁 , 𝑢𝑁−1) = 0,  (1e) 

                                                           ℎ(𝑞𝑘, 𝑞𝑘+1, 𝑢𝑘) ≤ 0, (1f) 

 

with 𝑘 = 1, . . . , 𝑁 − 1.  Equation (1a) represents objective function, equations (1b) and (1c) represent laws of physics, equations 

(1d) and (1e) represent initial and final conditions respectively, while (1f) represents externally imposed constraints.  
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Figure 1: Mean power required for standstill hovering at different combinations of scaling factor and initial Reynolds number 

3 Results 

Optimizations were performed for 10400 different combinations of wing scaling factors (1 to 9) and experimentally validated 

initial Reynolds numbers (100 to 1400) [6]. For each feasible combination of wing scaling factor and Reynolds number, the 

mean power required for hovering in Martian atmosphere is reported, see Figure 1. The optimal combination was found for 

wings uniformly scaled by scaling factor n=4.2, while flying in the conditions resulting in mean Reynolds number Re=631. The 

algorithm found different energy-efficient flapping patterns for a wide range of scaling factors, thus providing notable insights 

into the physics of flapping flight on Mars and valuable directions for the design and control of Mars flapping wing aerial 

vehicles.  

4 Conclusion 

Results of the numerical experiment indicate that the developed optimization algorithm can be successfully used for 

computationally efficient optimization of design and dynamics of an insect-type flapping aerial vehicle for Mars exploration 

purposes — where higher fidelity fluid-structure coupled procedures fail to deliver because of computational non-efficiency. The 

next natural step, in the development process of the presented algorithm and research of flapping flight on Mars, is to expand the 

existing aerodynamic model with forward flight features. 
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EXTENDED ABSTRACT

1 Introduction

Estimation techniques have become a useful method for increasing the available information of a particular system. From a
reduced set of sensors and a model of the system, not-sensed variables can be estimated. In most cases, the estimator belongs
to Kalman filter family. The filter corrects the possible drift between model and real system based on a reduced set of sensor
measurements.

The Kalman filter assumes that the system is linear and that the noises of the measurements and the system are gaussian white
noise and with known statistical properties. None of these assumptions are usually fulfilled in real applications: most systems are
non-linear and their statistical properties are hard to obtain. This is the case when a multibody model is employed to represent
the system. To deal with non-linear systems, several filters have been proposed [1]. From them, the error extended Kalman filter
(errorEKF) stands out as one of the best in terms of accuracy and efficiency [2]. The determination of the statistics of the sensors
and system (also known as covariance noise matrices) is typically based on a trial-and-error procedure. However, it is important
to have knowledge on the statistics, since wrong values can be turned into estimation errors and divergence issues.

As a solution to this difficulty, Adaptive Kalman filters (AKF) are proposed. The most popular approaches rely on the innovation
sequence of the filter, that is, the difference between the real and estimated measurements. From the Kalman filter theory, for
the true value of the covariance noise matrices, the innovation sequence must be white noise. Based on the previous principle,
several methods have been developed such as the maximum likelihood estimation [3], Sage-Husa filter [4] or variational Bayesian
estimation [5]. The maximum likelihood looks for the covariance matrices which result in the maximum probability of observing
a certain innovation sequence. The Sage-Husa filter is based on the maximum a posterior principle, which is similar to find the
maximum likelihood weighting the most recent estimations. The variational Bayesian, instead of giving a unique value for the
matrices, estimates a probability density function.

From the previous methods, only the maximum likelihood has proven to be capable of estimating the measurement noise co-
variance matrix (MNCM) and process (system) noise covariance matrix (PNCM). Although Sage-Husa filter can theoretically
estimate both matrices, it has shown stability issues when both matrices are estimated at the same time. With respect to the
variational Bayesian, it is only used for estimating the MNCM, since it assumes that the PNCM is known. This constitutes an
important limitation, since an acceptable value of the MNCM can be obtained from the manufacturer of the sensors. Meanwhile,
it is difficult to be certain with any initial guessing of the PNCM.

Adaptive Kalman filters are traditionally employed in navigation problems. Hence, it is necessary to address its combination
for multibody-based state estimation and evaluate its performance. Due to the a priori benefits of the maximum likelihood, this
work presents an extended Kalman filter combined with the maximum likelihood approach for estimating the covariance noise
matrices.

2 Methodology

The performance of the proposed filter is evaluated in terms of robustness and accuracy. For that purpose, two mechanisms are
modeled: a four-bar linkage (Figure 1a) and a five-bar linkage (Figure 1b). Each mechanism is modeled in natural coordinates
and using the augmented Lagrangian of index-3 (ALI3P) [6] as formulation to solve the motion of the mechanism. Since all the
tests are performed in a simulation environment, three multibody models are employed. The first one is considered as the real
mechanism. The sensor measurements are obtained from this model. The second multibody model acts as a model of the real
mechanism. In order to replicate a real situation, modeling errors are introduced. Finally, the third model is the model combined
with the proposed filter, which would correct the errors based on the information provided by the measurements taken from the
real mechanism.

The accuracy of the filter is evaluated through a batch of tests with different initial values of the covariance noise matrices. The
filter is expected to estimate an adequate value of the covariance noise matrices and lead to a solution with the same magnitude of
error with independence of the initial covariance values. During these tests, the mechanism is only affected by the gravity force.
To asses the robustness of the filter, a torsional spring is added to the crank. After some seconds, the spring breaks simulating a
failure on a real machine. The filter should re-adapt its estimation on the covariance matrices to the new scenario in order to keep
the accuracy on the estimations.
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(a) Four-bar linkage.
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(b) Five-bar linkage.

Figure 1: Mechanisms employed in this work.
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Figure 2: Error and confidence interval of the position, velocity and accelera-
tion of the crank angle in the four-bar linkage during the robustness test.

3 Results

The results show that the proposed filter can be used to estimate the values of the process noise covariance matrix. However, the
algorithm showed divergence issues when estimating also the measurement noise covariance matrix in some scenarios. Never-
theless, the estimation of the MNCM did not improve the accuracy of the state estimation.

Regarding the accuracy, the proposed filter converged to a solution which minimizes the error of the estimations with inde-
pendence of the assumptions for the initial covariance matrices. With respect to the robustness, it showed to provide accurate
estimations even with unexpected changes in the real system, tracking the effects of the new scenario quickly.

These conclusions can be extracted from Figure 2, where it can be seen how the confidence interval becomes wider when the
spring breaks, keeping the error in the estimations under a confidence interval of 95%, showing accuracy and reliability in the
estimations. It means that when the AerrorEKF-FE detects the new scenario, it increases the values of the PNCM giving more
relevance to the sensor measurements in order to track the new state of the system. Once that the observer tracks the new scenario
of the real mechanism, the covariances are reduced.

However, the computational cost of the proposed adaptive filter is higher than the errorEKF-FE. The additional cost of estimat-
ing the process noise covariance matrix implies that the filter requires about the double of time per time-step to perform the
estimations.

Finally, this work shows the benefits of adaptive Kalman filtering based on multibody models. In most applications, the process
noise covariance matrix can not be known and, hence, the accuracy and stability of the filter is compromised. With adaptive
methods, the process noise covariance matrix can be estimated increasing the accuracy and robustness of the estimator.
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EXTENDED ABSTRACT 

1 Introduction 

This contribution presents a survey of the use of multibody simulations in the trolleybus development performed by the authors 
of the paper (trolleybus is similar in its design to a bus, it differs in some design elements – traction motor, pantographs, etc. – 
and thus in the distribution of unsprung masses). These are especially simulations of driving along an uneven road surface, 
simulations of a slow front impact against a concrete wall, design of the rear body stabilizer bar of an articulated trolleybus, 
simulations of the fall of a standing passenger against the trolleybus composite doors. Results of these simulations were 
generally confirmed by experimental measurements. [1] 

2 Simulations with multibody models of the trolleybuses 

In the case of trolleybuses (generally road vehicles of public transport), multibody models of empty and fully loaded vehicles 
are generally created. For both model weight variants of relative simply multibody model and multibody model with the 
detailed kinematics of the axles suspension are generally created (see Figure 1). Generation of relatively simple multibody 
models and an effort to improve them are important because they shorten significantly the computing time and can reveal 
mistakes in detailed models. 

     

Figure 1: Real trolleybus ŠKODA 21 Tr and visualization of its multibody model (in SIMPACK software) 

The results of the simulations with multibody models of trolleybuses are used especially as input data for the calculation of 
stresses of bodywork and chassis parts using FEM programs, in the field of fatigue life assessment of dynamically loaded parts 
of vehicle structures, for the improvement of driving properties of vehicles, for the evaluation of the suitability and design of 
the used axles suspension elements (air springs and shock absorbers) and for the improvement of the ride safety and driving 
comfort of a driver and passengers. 

3 Simulations of driving along an uneven road surface 

Driving along an uneven road surface can reveal a lot about the vehicle’s vertical dynamic properties and about the suitability 
of the applied axles suspension elements. Especially time histories of relative deflections of springs, relative velocities in the 
shock absorbers, stress acting in the axles radius rods or radius arms, and acceleration in various points in the vehicle interior 
are the monitored quantities (e.g. [2]). On the basis of the relative deflections of springs, relative velocities in shock absorbers, 
and stress acting in radius rods or radius arms it is possible to determine the time histories and the extreme values of the forces 
acting in those suspension elements of axles, which can be utilized in connection with the suitable numerical methods for the 
stress analysis of structures, for the prediction of fatigue life of bodywork and chassis parts of the tested vehicle. In order to 
evaluate the vertical dynamic properties of the vehicle when driving along the uneven road surface, it is necessary to know the 
surface characteristics, i.e. statistical properties of unevennesses of the surface or direct its geometry. The geometry of the 
uneven surface profile of the run through the section is known in test polygons. Test tracks, which are created by distributing 
artificial vertical unevennesses (obstacles) on the road surface, are also often used. An artificial test track created according to 
the internal methodology was used for test drives with real trolleybuses and for simulations with multibody models (e.g. [1]). 
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4 Simulations of slow front impact against the concrete wall 

The front impact against a concrete wall at the running speed of 5 km/h is one of the tests which are used for the verification of 
properties of public transport vehicles required by their operators. In practice, a slow front impact may occur e.g. during arrival 
in the vehicles depot. Due to that impact, a permanent deformation of the vehicle structure should not occur. This requirement 
was a starting point for the proposal of the new design of a front wall of the ŠKODA trolleybuses which a new type of bumper 
was used. The dynamic deformation load characteristic of the bumper was determined at laboratory tests. The simulations of a 
slow front impact were carried out with the trolleybuses multibody models. Time histories and extreme values of the bumper 
deformation, the acceleration in the front wall of the trolleybuses, and the total force transferred to the front wall of the 
trolleybuses were the monitored quantities during slow front impact simulations. The simulations results served as input data 
for the FEM calculation of the trolleybuses structure deformation. 

5 Design of the rear body stabilizer bar of an articulated trolleybus 

In the course of the ŠKODA articulated trolleybus modernization a different type of the articulation and the driving axles were 
used in its construction among others. During test drives with the real modernized trolleybus focused on the vehicle driving 
stability considerable rolling of the rear body appeared during all the driving manoeuvres. Test manoeuvres consisted in severe 
changing the right lane to the left one and immediate severe returning to the right lane. Test drives with both empty and loaded 
trolleybus were stopped at lower speeds than the requirements of their operators are, considering the problematic behaviour of 
the vehicle. Using the rear body stabilizer was chosen as a suitable constructional solution for reducing the roll angle of the 
rear body of the modernized trolleybus. A torsional lateral stabilizer of the trolleybus rear body made of the steel bar of a 
circular cross section was considered in the design. A suitable diameter of the bar was determined on the basis of simulations 
results that were performed with the multibody models of the trolleybus. The monitored quantities were, like in the case of 
experimental measurements, time histories and extreme values of the angle of mutual position of the trolleybus front and rear 
bodies, the rear body roll angle, and the lateral acceleration of the rear body above the rear axle. On the basis of the results of 
the documented test drives simulations the optimum diameter of the steel rod used for the stabilizer bar making was proposed. 
The suitability of the complete structural design of the rear body stabilizer of the trolleybus for improving its driving stability 
was confirmed at operation of real trolleybuses. 

6 Simulations of the fall of a standing passenger against the trolleybus doors 

In the framework of a so-called “plastic program” ŠKODA manufacturer introduced composite doors into the 
trolleybuses of its production program. Verification of the applicability of their structural design was carried out by 
means of both experimental tests on the real composite doors prototype and computer simulations. Before introducing 
composite doors into vehicles in series production it is necessary to carry out operational, fatigue life and strength tests and 
impact force resistance tests. In tests of doors resistance against the impact force, it is necessary to determine the maximum 
dynamic force which should be transferred by the doors. The force was determined during the simulation with the 
multibody models of the trolleybuses with a standing passenger (passenger is modelled using alaska/Dynamicus human 
body model). In the multibody models the computed doors stiffness is realized by a spring-damper element, which is active 
only in case of a passenger – doors contact. In order to determine the time history and the extreme force acting on the doors, 
which was excited by the fall of a standing passenger, an unexpected avoidance manoeuvre in various driving speeds and with 
various front wheels angles were simulated. The following “parameters” of the passenger were changed: distance from the 
doors, mass, and height. In the simulations a quick response of the passenger was not considered. Otherwise back or shoulder 
impact was considered. Simulations results served as input data for the FEM calculation of the composite doors stresses 
and as the basis for experimental tests on their real prototype. On the basis of the simulations results the construction of 
steel guide brackets of the mechanism for shutting the doors was optimized. The correctness of the results of the 
simulation was confirmed by means of tearing the guide bracket out on the real prototype of doors. 

7 Conclusions 

The contribution presents examples of multibody simulations with trolleybuses, the results of which were used to improve the 
technical properties of these vehicles. Based on the requirements of their manufacturers and operators to improve other 
technical properties, it is of course possible to perform other types of simulations. 
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EXTENDED ABSTRACT

1 Introduction

In recent decades, Large Deployable Reflectors (LDR) have attracted the attention of several aerospace companies due to their
wide applications. LDR systems are commonly used as mesh reflectors for large aperture space antennas in aerospace applications
since they provide affordability while guaranteeing at the same time a high gain and a high directivity. These types of reflectors
are appropriate for the majority of applications where very large apertures are required such as, for example, space missions that
include communications, synthetic aperture radar, radiometry, radio astronomy, and navigation.

The key features that characterize the geometry of LDR systems are closely connected with volume constraints of launch vehicles,
mainly because of budget problems [1]. Deployable mesh reflectors are composed of rigid bodies, deformable components,
mechanical joints, and control actuators which allows for achieving a complete transition between the initial stowed configuration
to the final deployed configuration.

The fundamental problems for the correct functioning of an LDR system are, therefore, the proper deployment of the folding
mechanism and the form-finding of the cable net which serves as support for the metal mesh. To maintain excellent reflective
qualities and meet the prescribed bandwidth requirements, the reflector surface must be as close as possible to the shape of a
paraboloid.

Most of the methods used in the literature define the best surface of the reflector as the one passing through the nodes of the
cable system of the front net [2]. In this case, the RMS error depends on the distance between the nodes of the front net with
respect to the desired working surface. In this work, however, we want to focus on the amount of energy that hits the feed, thus
investigating the best topology of the net that guarantees a greater concentration of the incident rays directed towards the focus
of the paraboloid.

2 Surface error correction algorithm

To improve the performance of the reflector, the best-fit paraboloid that minimizes the RMS error needs to be found. For conve-
nience of analysis, the two-dimensional model will first be illustrated.

As shown in Fig. 1(a), taking into consideration a prime-focus antenna, where the focus is positioned in the centre of the reflector,
the incident rays parallel to the y-axis are reflected on the surface of the reflector and then directed towards the feed. The point
Pci represents the centre of the i-th line segment of the polygonal. Figure 1(b) shows an enlargement around the feed, which
highlights how the incident rays coming from the points Pci are not directed exactly on the focus F , but are distant from it by a
quantity di.
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To determine this quantity, we need to calculate the minimum distance between the focus and each reflected ray coming from all
line segments of the polygonal chain. From a geometric point of view, the distance of a point from a line is defined as the line
segment perpendicular to the line which has the point itself and a point on the line as extremes. To find the point of minimum
distance X0 we need to solve the following system of equations:

[
1 −vr

vr
T 0

][
x0
λ

]
=

[
pc

vr
T F

]
(1)

where 1 is an identity matrix of order 3, pc is the position vector of Pci and vr is the vector of the reflected ray. The latter vector
is calculated using the law of reflection.

What described for the two-dimensional model can be even extended in the three-dimensional model. Unlike the 2D model, the
polygonal chain is replaced by the surface reflector consisting of the cable net system, whose nodes are located on the paraboloid
surface. Here, for the RMS error evaluation, the vertices of the triangular facets and their centroid are considered. As can be
seen from Fig. 1(b) of the 2D model, the net topology having the nodes located on the ideal parabola does not guarantee the
best energy contribution to the feed. Hence, the best-fit paraboloid can be achieved thanks to the formulation of an optimization
algorithm which, by varying the position of the nodes of the cable net, minimizes the distance of each reflected ray with respect
to the focus of the paraboloid. The optimization problem can be summarized as follows:

Find x,y,z
min eRMS
subject to xv = x0

v ,yv = y0
v ,zv = z0

v

(2)

where x, y, z represent the coordinates of the nodes of the cable net, eRMS is the RMS of the di distances, xv, yv, yv the coordinates
of the nodes located on the ring truss and x0

v , y0
v , y0

v their initial position.

3 Numerical simulation

To demonstrate the validity of the proposed method, the best topology of an offset-feed reflector is proposed. The set of points
located in the left part of the Fig. 2 demonstrates how the reflected rays are located in a very small area near the feed.
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Figure 2: The topology of the cable net of an offset reflector before and after optimization, and the points of minimum distance
with respect to the focus.

4 Conclusions

An optimization algorithm to find the best surface of a mesh deployable reflector has been proposed. The numerical results
confirm the validity of the method, unlike those proposed in the existing literature, finding the best cable net topology that
maximizes the energy contribution of the reflector.
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EXTENDED ABSTRACT

1 Introduction

Elastic multibody systems (EMBS) are often used to describe coupled mechanical systems. High complexity of those systems
and increasing demands on detail make the use of model order reduction (MOR) inevitable. MOR aims at generating reduced
models that allow numerically efficient evaluations with a small approximation error in the space of interest. Classical reduction
approaches for EMBS, e.g. the Craig-Bampton-Method [1], reduce the single bodies separately with modal MOR and build the
reduced system basis by assembling the reduced bodies. However, this method can neither account for the interaction between
the different bodies and the dynamics induced by the coupling nor is it able to regard viscous damping or gyroscopic terms.
Nevertheless, Craig-Bampton and modal truncation are still state of the art. Input-output based MOR techniques, as e.g. Krylov
subspace methods, instead are often better suited for coupled systems [2]. This contribution extends existing MOR methods
to EMBS with fast rotating bodies. Improved reduction schemes are applied by the use of the powerful software packages
MatMorembs [3] and Neweul-M2 [4] which were developed in previous projects and are enhanced for the reduction of fast
rotating bodies or viscous damping, respectively. Furthermore, the applicability to an industrial use case, a helicopter model with
non-rotating flexible airframe, shown in Figure 1, and rotating main rotor, is demonstrated.

Figure 1: Finite element mesh of a helicopter airframe structure, available at Airbus Helicopters [5]

2 Description of flexible multibody systems with rotating bodies

The motion of an EMBS caused by external forces fff can be described with the floating frame of reference approach [6].
Its advantage is that the degrees of freedom can be divided into nonlinear rigid body motions qqqr and small linear deforma-
tions qqqe. The elastic degrees of freedom frequently result from a discretization of the elastic bodies with finite elements (FE)
so that qqqe =

[
qqq1

e ,qqq
2
e , ...,qqq

K
e
]T describes the displacements of the FE-nodes for a system with K elastic bodies. The equation of

motion of the system then reads
MMMq̈qq+DDDq̇qq+KKKqqq = fff . (1)

Here, MMM,DDD, KKK ∈ RN×N are the mass, damping and stiffness matrix, respectively, and qqq ∈ RN denotes the generalized coordi-
nates qqq = [qqqr,qqqe]

T of a system with K bodies. If a body underlies fast rotations, nonlinear gyroscopic terms GGG(q̇qq) in DDD = DDDl +GGG
and geometric stiffness KKKgeo(q̇qq) in KKK = KKKl +KKKgeo cannot be neglected and are added to the linear damping and stiffness matrix,
DDDl and KKKl, of the elastic bodies. Also the mass matrix MMM = MMM(qqq, q̇qq) becomes state dependent because of the rigid body motions.
For mechanical systems, linear MOR is popular and shall also be applied in this work. The nonlinearity in the rotating system,
caused by geometric stiffness and gyroscopic effects, prevents direct application of linear MOR. Thus, linearization of the sys-
tem around a steady state qqqs with q̇qqe,s = q̈qqe,s = 000 is necessary. The elastic deformation of a body k underlying a fast, constant
rotation ωk can be determined with

qqqk
e,s =

(
KKKk

l +KKKk
geo(ω

k)
)−1

fff k. (2)

For small deviations ∆qqq and q̄qq = qqqs +∆qqq with qqqs =
[
qqqr,s,qqqe,s

]T then

MMMsq̄qq+DDDsq̄qq+KKKsq̄qq = fff (3)

holds. Here, MMMs(qqqs, q̇qqs), DDDs(qqqs, q̇qqs) and KKKs(qqqs, q̇qqs) are constant and linear MOR can be applied.
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3 Projection based model order reduction

The linearized equation of motion (3) can be rewritten as linear time invariant system

MMMs ¨̄qqq+DDDs ˙̄qqq+KKKsq̄qq = BBBuuu,

yyy =CCCq̄qq.
(4)

Here, BBB ∈ RN×b and CCC ∈ Rc×N are the input and output matrices and uuu ∈ Rb und yyy ∈ Rc are the system inputs and outputs. The
dimension N is usually high and system evaluations are numerically expensive. The goal of MOR is to approximate the full order
system with

q̄qq≈VVV q̃qq (5)
in a low dimensional subspace V = span{VVV}. Plugging (5) into (4) and left multiplying VVV T yields the reduced model

VVV T MMMsVVV︸ ︷︷ ︸
M̃MM

¨̃qqq+VVV T DDDsVVV︸ ︷︷ ︸
D̃DD

˙̃qqq+VVV T KKKsVVV︸ ︷︷ ︸
K̃KK

q̃qq =VVV T BBB︸︷︷︸
B̃BB

uuu,

ỹyy = CCCVVV︸︷︷︸
C̃CC

q̃qq.
(6)

The choice of VVV is the key problem in MOR by projection since the reduced system dimension should be n� N on the one hand
and the approximation error in time and frequency domain is required to be small on the other. Classical approaches try to find
such VVV by taking selected eigenmodes as its columns, for instance the Craig-Bampton method, other component mode synthesis
and modal truncation. Yet, other methods based on Gramian matrices or Krylov subspaces [5] are often more appropriate for
EMBS with interacting elastic bodies. This is because the eigenvalue problem does not consider any excitation of the system
whereas the bodies are indeed excited by the moving interfaces. Another drawback of the modal approaches in the case of fast
body rotations is that the system eigenmodes become complex caused by the gyroscopic terms. By contrast, input-output based
methods do take into account if and where the system is excited and at which point the displacements should be predicted.

4 Numerical example

The described reduction methods are applied and compared for a helicopter in steady flight. The system consists of a rotating
elastic main rotor coupled with an elastic airframe. The rotation and the resulting effects influence the system dynamics as well
as the interaction between both bodies. A proper subspace therefore depends on the rotor speed. If the coupling of the bodies is
not considered during the reduction important modes, e.g. rotor-shaft-bending modes, are ignored. Current state of the art is the
representation of main rotor inertia by an equivalent rotor mass. This work aims to find a more appropriate solution by modeling
the system as EMBS, applying input-output based MOR techniques and comparing the size of the reduced systems as well as the
approximation errors.
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Acosta Suñé, Raül . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Akaki, Tomohiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Akeno, Koki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Akhadkar, Narendra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Al Yahmedi, Amur Salim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Al-Ouakad, Hassan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Alazard, Daniel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Aller, Felix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Alves da Silva, Wallyson Thomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Ambrósio, Jorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 123, 306
Amirouche, Farid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Andersson, Fredrik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Antali, Máté . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Antunes, Pedro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Arbatani, Siamak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Arnold, Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261, 271
Arora, Rohit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100, 231
Askari, Ehsan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Bait Bahadur, Issam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Balogh, Tamas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Bauer, Benjamin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
van den Bedem, Henry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Belotti, Roberto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Benatti, Simone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
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